Building Act 1993

Building Regulations 2006

Regulation 1507: Certificate of Compliance—Design

To Victorian Building Authority

Relevant building surveyor:	Chief Commissio	ner
Postal address: PO Box 536 Melbourne VIC 3001		
From		
Building practitioner: Edward Arthur Bennett		
Category and class: Engineer - Civil	Registration No:	EC 25923
Postal address: 3 Wanniti Road Belrose NSW 2085:		
Property details (if applicable) STATEWIDE VICTORIA		
Number: Street/road		City/suburb/tov

Number:	Street/r	oad:			City/suburk	o/town:
Lot/s:		LP/PS:		Volume:	Folio:	
Crown allotr	nent:	Section:	Parish:		County:	

Municipal District:

Structure Type: Mountain Shades:

5m Arc Tent

Activity Type: Wind – Various Speed Limits Period of operation of this permit: three (3) years from the date of issue

Conditions

Occupation is subjected to the following conditions:

- 1. The sitting of the structure shall be to the approval of the municipal building surveyor responsible for that municipal district
- 2. Minimum tie downs/weights requirements shall be in accordance with the submitted engineering design and all documentations E-11-263343.
- 3. The owner of the structure or hirer must obtain confirmation in the form of a Certificate of Compliance – Inspection issued by a registered building practitioner in the category of building surveyor, building inspector or supervisor that all conditions within the occupancy permit have been complied the following the supervision of the erection of the structure.

Approved location for display of occupancy permit:

N/A

The approved location for the display of this permit for the purpose of regulation 1007 is adjacent to the entry stairs in a weather proof cover.

Suitability for occupation:

The building or part of a building to which this certificate applies is suitable for occupation.

Compliance I, Edward A Bennett, did check designs and I certify that the tent structures complied with the relevant Australian Standards *AS/NZS* 1170.2:2011, *AS4100:1998, AS1664.1:1997*

Design documents Computations: Prepared by: C & S Date: 20/01/2015

M-11-263281 (page 2-33).

Other documentation: BCA Volume 1 Part B AS/NZS 1170.0:2002 AS/NZS 1170.1:2002 AS/NZS 1170.2:2011 AS/NZS 1664.1:1997

Signature

Test reports:

Signed: Cabe ett

E.A. Bennett M.I.E. Aust. BPB NSW-0282 & BPB VIC – EC 25923, NT - 38496ES & RPEQ 4541 Date: 20/01/2015

Civil & Structural Engineering Design Services Pty. Ltd.

Client:Extreme Marquees Pty LtdProject:Design check – 5m Arc Tent

Reference: Product Specification Sheets

Report by:KZChecked by:EABDate:19/02/2015

JOB NO: E-11-263343

Contents

1 2	Introduction Design Restrictions and Limitations	
3	Specifications	
5	3.1 General	
	3.2 Aluminium Properties	6
	3.3 Buckling Constants	6
	3.4 Section Properties	7
	Design Loads	
	3.5 Serviceability	
	3.6 Ultimate	
	3.7 Load Combinations	
	3.7.1 Serviceability	
	3.7.2 Ultimate	
4	Member Properties	8
	4.1 Material Properties	8
5	Wind Analysis	8
	5.1 Parameters	8
	5.2 Pressure Coefficients (C _{fig})	8
	5.2.1 Wind perpendicular to length	
	5.2.2 Pressure summary	
	5.3 Wind Tunnel Simulator:	9
	5.3.1 Opened Tent (0 degree)	
	5.3.2 Opened Tent (90 degrees)	
	5.3.3 Closed Tent	
	5.4 Wind Load Diagrams	
	5.4.1 Wind d Load (External)	
	5.4.2 Wind d Load (Internal)	
	5.4.3 Max Bending Moment in major axis due to critical load combination for columns	
	5.4.4 Max Bending Moment in minor axis due to critical load combination for columns	
	 5.4.5 Max Shear in major axis due to critical load combination for columns 5.4.6 Max Axial force in major axis due to critical load combination for columns 	
	5.4.6 Max Axial force in major axis due to critical foad combination for columns	
6	Checking Members Based on AS1664.1 ALUMINIUM Limit State Design (LSD)	
0	6.1 Section \$32x2	
7		
7	Summary	
A	PPENDIX "A" - Reduction in wind speed	19

1 Introduction

This 'Certification' is the sole property for copyright to Mr. Ted Bennett of Civil & Structural Engineering Design Services Pty. Ltd.

The relevant Australian Standards AS1170.0:2002 General principles, AS1170.1:2002 Permanent, imposed and other actions and AS1170.2:2011 Wind actions are used to analyse the temporary tent structures. The design wind speed and appropriate parameters such as wind action, terrain/height, shielding, topography and aerodynamic shape of structure are considered and reflected in the final design wind load on the structure.

2 Design Restrictions and Limitations

- 2.1 The erected structure is for temporary use only and is limited to 6 months maximum at any one site establishment.
- 2.2 It should be noted that if high gust wind speeds are anticipated or forecast in the locality of the tent, the temporary erected structure should be dismantled.
- 2.3 For forecast winds in excess of (**refer to summary**) all fabric shall be removed from the frames, and the structure should be completely dismantled.

(Please note that the locality squall or gust wind speed is affected by factors such as terrain exposure and site elevations.)

- 2.4 The structure may only be erected in regions with wind classifications no greater than the limits specified on the attached wind analysis.
- 2.5 The wind classifications are based upon category 2 in AS. Considerations have also been made to the regional wind terrain category, topographical location and site shielding from adjacent structures. Please note that in many instances topographical factors such as a location on the crest of a hill or on top of an escarpment may yield a higher wind speed classification than that derived for a higher wind terrain category in a level topographical region. For this reason, particular regard shall be paid to the topographical location of the structure. For localities which do not conform to the standard prescribed descriptions for wind classes as defined above, a qualified Structural Engineer may be employed to determine an appropriate wind class for that the particular site.
- 2.6 The structures in no circumstances shall ever be erected in tropical or severe tropical cyclonic condition.
- 2.7 The free roof structure has not been designed to withstand additional snow loadings such as when erected in alpine regions.
- 2.8 For large scale projects, or where the site conditions approach the design limits for the structure, consideration should be given to pullout tests of the stakes and professional assessment of the appropriate wind classification for the site.
- 2.9 No Fabrics or doors should be used for covering the sides of Arc Tents due to the lack of bracing within the system and insufficient out-of-plane stiffness of framing.

3 Specifications

3.1 General

Tent category	MEGAFRAME 42 HD (MF42HD)
Material	Aluminium

Size	Model
5m	Arc Tent

3.2 Aluminium Properties

Aluminium Properties		
Compressive yield strength	Fcy	241 MPa
Tensile yeild strength	Fty	241 MPa
Tensile ultimate strength	Ftu	262 MPa
Shear yield strength	Fsy	138 MPa
Bearing yeild strength	Fby	386 MPa
Bearing ultimate strength	Fbu	552 MPa
Yield stress (min{Fcy:Fty})	Fy	241 MPa
Elastic modulus	E	70000 MPa
Shear modulus	G	26250 MPa
Value of coefficients	kt	1.00
	kc	1.00
Capacity factor (general yield)	фу	0.95
Capacity factor (ultimate)	φu	0.85
Capacity factor (bending)	φb	0.85
Capacity factor (elastic shear buckling)	φν	0.8
Capacity factor (inelastic shear buckling)	φνρ	0.9

3.3 Buckling Constants

Type of member and stresses	Intercept, MPa	Slope, MPa	Intersection
Compression in columns and beam flanges	BC= 242.87	Dc= 1.43	Cc= 69.61
Compression in flat plates	Bp= 310.11	Dp= 2.06	Cp= 61.60
Compressive bending stress in solid rectangular bars	Bbr= 459.89	Dbr= 4.57	Cbr= 67.16
Compressive bending stress in round tubes	Btb= 250.32	Dtb= 14.18	Ctb= 183.52
Shear stress in flat plates	Bs= 178.29	Ds= 0.90	Cs= 81.24

3.4 Section Properties

Section	Dimension	X	у	Α	$\mathbf{I}_{\mathbf{x}}$	$\mathbf{I}_{\mathbf{y}}$	$\mathbf{r}_{\mathbf{x}}$	$\mathbf{r}_{\mathbf{y}}$	$\mathbf{Z}_{\mathbf{x}}$	\mathbf{Z}_{y}
		mm	mm	mm^2	mm^4	mm^4	mm	mm	mm ³	mm ³
Main Profile	\$ 32x2	32	32	188.5	21300	21300	10.63	10.63	1331.3	1331.3

Design Loads

3.5 Serviceability

		Distributed load (kPa)	Design load factor (-)	Factored imposed load (kPa)
Superimposed live	Q	-	1	-
Self weight	G	self weight	1	Self weight
3s 91.8 km/hr gust	W	0.393 C _{fig}	1	0.393 C _{fig}

3.6 Ultimate

		Distributed load (kPa)	Design load factor (-)	Factored imposed load (kPa)
Live	Q	-	1.5	-
Self weight	G	self weight	1.35, 1.2, 0.9	1.2 self weight, 0.9 self weight
3s 91.8km/hr gust	W	0.39 C _{fig}	1.0	$0.39C_{\rm fig}$

3.7 Load Combinations

3.7.1 Serviceability

Gravity	=	$1.0 \times G$
Wind	=	$1.0 \times G + 1.0 \times W$

3.7.2 Ultimate

Downward	=	$\begin{array}{l} 1.35\times G \\ 1.2\times G + W_u \end{array}$
Upward	=	$\begin{array}{l} 0.9\times G+W_u\\ 0.9\times G+W_u{+}W_{I\!P} \end{array}$

4 Member Properties

4.1 Material Properties

		Thickness Range	Ten	sion	Compression	Sh	ear	Bea	ring	Compressive Modulus of Elasticity
		(mm)	(M	Pa)	(MPa)	(M	IPa)	(M	Pa)	(MPa)
Alloy	Product		Ftu	Fty	Fcy	Fsu	Fsy	Fbu	Fby	
6061-T6	Extrusions	Up to 25	262	241	241	165	138	551	386	70000

5 Wind Analysis

Wind towards surface (+ve), away from surface (-ve)

5.1 Parameters

T	
Terrain category $= 2$	
Site wind speed $(V_{sit,\beta}) = V_R M_d (M_{z,cat} M_s M_t)$	
$V_R = 25.5 \text{ m/s} (91.8 \text{ km/hr})$	(regional 3 s gust wind speed)
$M_d = 1$	
$M_s = 1$	
$M_t = 1$	
$M_{z,cat} = 0.91$	(<i>Table 4.1(B) AS1170.2</i>)
, ,	
$V_{sit,\beta} = 23.205 \text{ m/s}$	

Height of structure (h) = 3.6 mWidth of structure (w) = 5 mLength of structure (l) = 5 m

$$\begin{split} Pressure \ (P) &= 0.5 \rho_{air} \ (V_{sit,\beta})^2 \ C_{fig} \ C_{dyn} \\ &= 0.393 C_{fig} \ kPa \end{split}$$

5.2 Pressure Coefficients (C_{fig})

5.2.1 Wind perpendicular to length

 $\begin{array}{ll} \mbox{Internal pressure coefficient } (C_{p,i})_{.} &= -0.3 \\ \mbox{External pressure coefficients:} \\ \mbox{Windward wall } (C_{p,e.}) = 0 \\ \mbox{Leeward wall } (C_{p,e.}) = 0 \\ \mbox{Side wall } (C_{p,e.}) = 0 \\ \end{array}$

Upwind slope $(C_{p.e.}) = 0, 0.57$ Downwind slope $(C_{p.e.}) = -0.6$

Action combination factor (k_c) (direction 1) = 1.0 Area reduction factor $(k_a) = 1$ (Windward impermeable, Table 5.1(A))

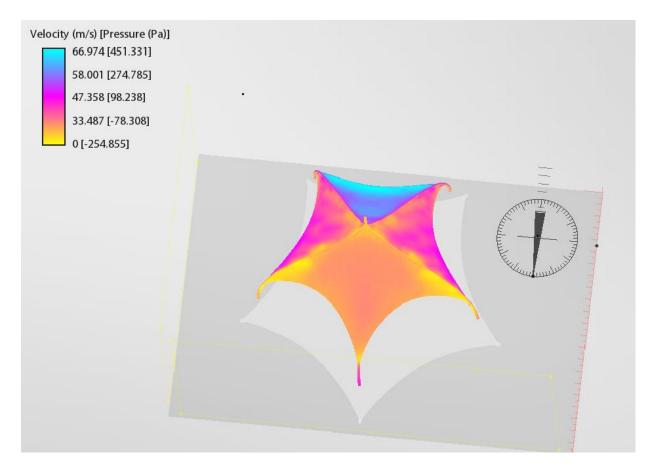
(H<25.0m) (20 degrees roof slope)

(mid of peak and eave)

(5.3B AS1170.2) (20 degrees roof slope)

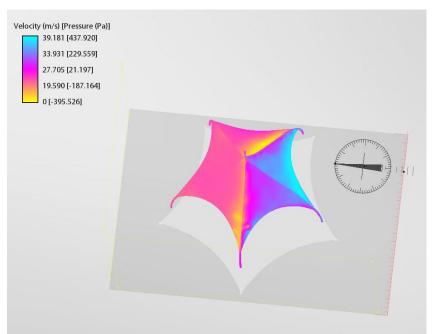
ABN: 62 051 307 852 3 Wanniti Road BELROSE NSW 2085 Email: design@civilandstructural.com.au

Tel: 02 9975 3899 Fax: 02 99751943 **Web: https://cseds.com.au/**

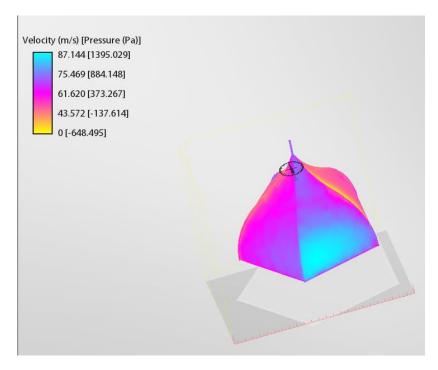

Local pressure factor $(k_l) = 1$ Porous cladding reduction factor $(k_p) = 1$

5.2.2 Pressure summary

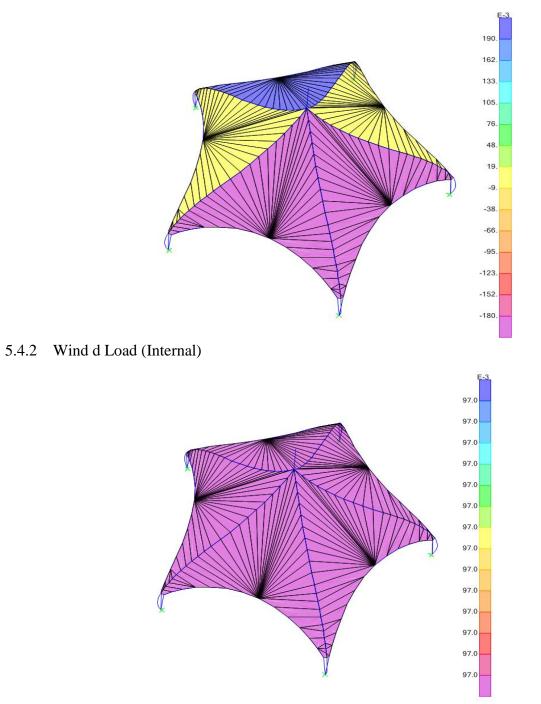
	Min (Kpa)	Max (Kpa)
Upwind Slope	0.00	0.18
Downwind Slope	-0.19	-0.19
Internal Pressure:	0.097 (I	<pa)< td=""></pa)<>


5.3 Wind Tunnel Simulator:

5.3.1 Opened Tent (0 degree)

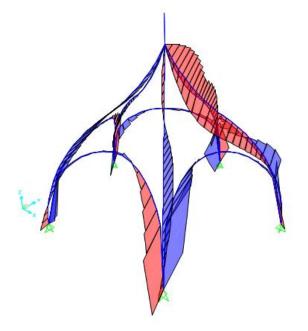


5.3.2 Opened Tent (90 degrees)

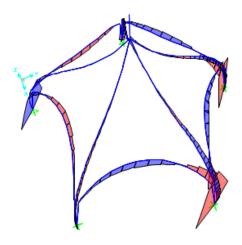

5.3.3 Closed Tent

As it is illustrated, the wind tunnel simulator reveals the tent would undertake huge amount of pressure and suction in closed condition. Thus, due to enormous amount of deflection and weakness of the elements, the tent should never stand in closed condition.

- 5.4 Wind Load Diagrams
- 5.4.1 Wind d Load (External)

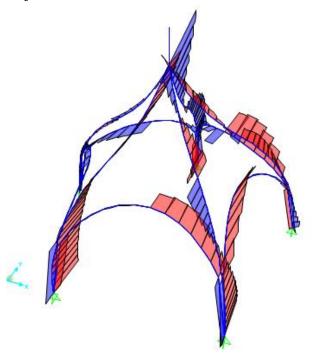

After 3D model analysis, each member is checked based on adverse load combination.

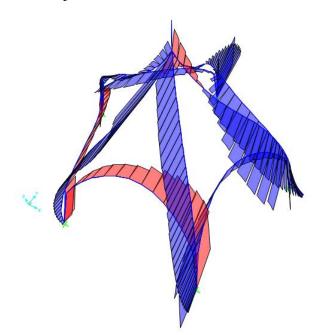
Tel: 02 9975 3899 Fax: 02 99751943 Web: https://cseds.com.au/



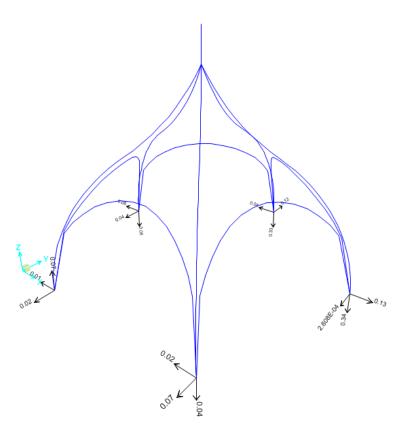
In this regard the adverse load combination for each member is as below:

5.4.3 Max Bending Moment in major axis due to critical load combination for columns


Max moment M*= 0.11kNm 5.4.4 Max Bending Moment in minor axis due to critical load combination for columns


Max moment M*= 0.095 kNm

5.4.5 Max Shear in major axis due to critical load combination for columns


Max shear $V^* = 0.11$ kN 5.4.6 Max Axial force in major axis due to critical load combination for columns

Max Tension $N_t^* = 0.21 \text{ kN}$

5.4.7 Reactions

Max Uplift $p^* = 0.34$ kN

6 Checking Members Based on AS1664.1 ALUMINIUM Limit State Design (LSD)

6.1 Section $\phi 32x2$

NAME	SYMBOL		VALUE	UNIT	NOTES	REF
Member: 58X50X2 (UPRIGHT	SUPPORT)					
Alloy and temper	6061-T6					AS1664.1
Tension	F _{tu}	=	262	MPa	Ultimate	T3.3(A)
	F _{ty}	=	241	MPa	Yield	
Compression	F_{cy}	=	241	MPa		
Shoor	F_{su}	=	165	MPa	Ultimate	
Shear	F _{sy}	=	138	MPa	Yield	
Bearing	F_{bu}	=	551	MPa	Ultimate	
Dealing	F_{by}	=	386	MPa	Yield	

Tel: 02 9975 3899 Fax: 02 99751943 Web: https://cseds.com.au/

Modulus of elasticity	E	=	70000	MPa	Compressive	
	k _t	=	1.0			
	k _c	=	1.0			T3.4(B)
FEM ANALYSIS RESULTS						
Load combination: 0.9D + Wind	d2(MIN)					
Axial force	Р	=	0.21	kN	compression	
In plane moment	M _x	=	0.11	kNm		
Out of plane moment	My	=	0.1	kNm		
DESIGN STRESSES						
Gross cross section area	Ag	=	188.5	mm ²		
In-plane elastic section modulus	Z _x	=	1331.3	mm ³		
Out-of-plane elastic section mod.	Z_y	=	1331.3	mm ³		
Stress from axial force	f _a	=	P/A _g	MDa		
Stress from in-plane bending	f _{bx}	=	1.11 M _x /Z _x	МРа	compression	
or cost nom in plane bending	•bx	=	82.63	MPa	compression	
Stress from out-of-plane	f _{by}	=	M _y /Z _y			
bending		=	75.11	МРа	compression	
COMPRESSION						
3.4.8 Compression in columns, a 1. General	ixial, gross	s secti	on			3.4.8.1
Unsupported length of	L		4600			
member		=		mm		
Effective length factor	k	=	1			
Radius of gyration about buckling axis	r	=	17.90	mm		
Slenderness ratio	kL/r	=	256.98			
Slenderness parameter	λ	=	4.80			
	D _c *	=	90.3			
	S ₁ *	=	0.33			
	S ₂ *	=	1.23			
	ϕ_{cc}	=	0.950			
Factored limit state stress	φF∟	=	9.94	МРа		
2. Sections not subject to torsion	al or torsio	onal-fle	exural buck	ling		3.4.8.2

Largest slenderness ratio for	kL/r	=	256.98			
flexural buckling						
3.4.10 Uniform compression in co	mponent	s of co	olumns, gro	ss section		
 flat plates 1. Uniform compression in compo 	onents of	colum	ns, gross s	ection -		
flat plates with both edges support			-, J			3.4.10.1
	k₁	=	0.35			T3.3(D)
Max. distance between toes of	L 1		20			
fillets of supporting elements for plate	b'	=	32			
	t	=	2	mm		
Slenderness	b/t	=	16			
Limit 1	S ₁	=	12.34			
Limit 2	S ₂	=	32.87		S1 < b/t < S2	
Factored limit state stress	٨E	_	218.68	MPa		
	φF∟	=	210.00	IVIFa		
Most adverse compressive	Fa	=	9.94	MPa		
limit state stress	I a	-	3.34	IVII a		
Most adverse compressive capacity factor	f_a/F_a	=	0.11		PASS	
BENDING - IN-PLANE 3.4.15 Compression in beams, ex	rtromo fib	ro arc	se soction			
rectangular tubes, box sections		re, gru	55 56011011			
Unbraced length for bending	L _b	=	4600	mm		
Second moment of area (weak axis)	l _y	=	21300	mm ⁴		
Torsion modulus	J	=	42015	mm ³		
Elastic section modulus	Z	=	1331.3	mm ³		
Slenderness	S	=	409.42			
Limit 1	S ₁	=	0.39			
Limit 2	S ₂	=	1695.86		S1 < S < S2	
Factored limit state stress	φF∟	=	183.97	МРа		
						3.4.15(2)
3.4.17 Compression in componer uniform compression), gross sect supported						
	k₁	=	0.5			T3.3(D)
	k ₂	=	2.04			T3.3(D)
1	••2	_			I	

$\begin{array}{cccc} t & = & 2 & mm \\ Slenderness & b/t & = & 16 \end{array}$	
Siendemess D/t = 10	
Limit 1 $S_1 = 12.34$	
Limit 2 $S_1 = 46.95$ $S_1 < S < S_2$	
Factored limit state stress ϕF_L = 218.68MPa	
Most adverse in-plane bending limit state stress F_{bx} =183.97MPa	
Most adverse in-plane bending capacity factor f_{bx}/F_{bx} =0.45PASS	
BENDING - OUT-OF-PLANE NOTE: Limit state stresses, ϕF_L are the same for out-of-plane	
bending (doubly symmetric section)	
Factored limit state stress $\phi F_L = 183.97$ MPa	
Most adverse out-of-plane bending limit state stress F_{by} =183.97MPa	
Most adverse out-of-plane bending capacity factor f_{by}/F_{by} =0.41PASS	
COMBINED ACTIONS	
4.1.1 Combined compression and bending	4.1.1(2)
	240
	3.4.8
	. 3.4.10
	. 3.4.17
F _{by} = 183.97 MPa	. 3.4.17
$f_a/F_a = 0.112$ Which is <0.15	
Check: $f_a/F_a + f_{bx}/F_{bx} + f_{by}/F_{by} \le 1.0$	4.1.1 (3)
i.e. 0.97 ≤ 1.0 PASS	(-)

7 Summary

7.1 Conclusion

- a. The 5m Arc Tents as specified has been analyzed with a conclusion that it has the capacity to withstand wind speeds up to and including **91.8km/hr.**
- b. For forecast winds in excess of **90 km/hr** the structure shall not be erected.
- c. For resisting against uplift due to 91.8km/hr wind, 0.5kN (50Kg) holding down weights per leg are required for the upright supports.
- d. The bearing pressure of soil should be clarified and checked by an engineer prior to any construction for considering foundation and base plate.
- e. Fabrics should not be used for covering sides of the structure due to the lack of wall bracing and insufficient out-of-plane stiffness of frame.

Yours faithfully,

Caber att

E.A. Bennett M.I.E. Aust. NPER 198230

APPENDIX "A" - Reduction in wind speed

		Design	wind spe	ed for Tempo	orary	Struct	ures
		In a	ccordan	ce with AS 11	L70.	2-2011:	
(design life	grea		ars), or less	e not less than 30 than 25 m/s for ter			
			25 *	[•] 3.6= 90 Km/	′hr		
				ordance with ind speed:	BC	۹:	
Region		bability of	Regional	wind speed (in n	ı/s) fo	r a referen	ce period of
	ex	ceedance	1 year	6 months	1	Month	1 Week
А		1:100	41 45	39		34 39	30 34
	Red	luction fa	actor for	temporary S	truc	tures:	
Wind regio	on	Redu	ction factor	on regional wind	speed	for struct	ures of
		6-month		1 month durati	-		duration
А		0.9		0.85).75
		0	-	0.00		<u>`</u>	
	V= 3	<mark>34*0.75</mark> =	=25.5 m/	s equal to 25	5.5*	3.6=91.	8 Km/hr