

Client: Extreme Marquees

Project: Design check – 15m, 12m & 10m X 5m Bay modular Event Deluxe 2 Tent for

91.8km/hr Wind Speed.

Reference: Extreme Marquees' Technical Data

Report by: KZ Checked by: EAB Date: 07/02/2019

JOB NO: D-11-266927-2

Table of Contents

1	Intr	oduction	3
2		ign Restrictions and Limitations	
3	Spe	cifications	5
	3.1	General	5
	3.2	Aluminium Properties	<i>6</i>
	3.3	Buckling Constants	
	3.4	Section Properties	
		•	
4	Des 4.1	ign LoadsUltimate	
		Load Combinations	
	4.2		
	4.2.	- ~	
5	4.2.		
)	5.1	nd Analysis	
	5.2	Pressure Coefficients (C _{fig})	
	5.2.	· · · · · · · · · · · · · · · · · · ·	
	5.3	Wind Load Diagrams	
	5.3.		
	5.3.	,	
	5.3.	- ()	
	5.3. 5.3.		
	5.3.	· · · · · · · · · · · · · · · · · · ·	
	5.3.	The state of the s	
	5.3.		
	5.3.	1 0 11	
	5.3.		
6		cking Members Based on AS1664.1 ALUMINIUM LSD.	
	6.1	Rafter	
	6.2	Upright Supports	26
	6.3	Gable Pole	30
	6.4	Ridge & Eave Purlin	
	6.5	Gable Beam	
		Intermediate Purlin	
	6.6		
_	6.7	Brace	
7		nmary	
	7.1		
8		pendix A – Base Anchorage Requirements	
9 10		pendix B – Hold Down Method Details	
1(, App	zenara za - regarenon ni wina speca	

Tel: 02 9975 3899 Fax: 02 99751943

1 Introduction

This 'Certification' is the sole property for copyright to Mr. Ted Bennett of Civil & Structural Engineering Design Services Pty. Ltd. and the license holder for the exclusive use of this Certification, Extreme Marquees.

The following structural drawings and calculations are for the transportable tents supplied by Extreme Marquees.

The frame consists principally of extruded '6061-T6' aluminium components with hot dipped galvanized steel ridge and knee connection inserts and base plate.

The report examines the effect of 3s gust wind of 91.8 km/hr on $15m \times 20m$ Event Deluxe 2 Tent as the worst-case scenario. The relevant Australian Standards AS1170.0:2002 General principles, AS1170.1:2002 Permanent, imposed and other actions and AS1170.2:2011 Wind actions are used. The design check is in accordance with AS/NZS 1664.1:1997 Aluminum limit state design.

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085 Tel: 02 9975 3899 Fax: 02 99751943

Web: https://cseds.com.au/

Email: hited@bigpond.net.au

3 | P a g e

2 Design Restrictions and Limitations

- 2.1 The erected structure is for temporary use only.
- 2.2 It should be noted that if high gust wind speeds are anticipated or forecast in the locality of the tent, the temporary erected structure should be dismantled.
- 2.3 For forecast winds in excess of (**refer to summary**) all fabric shall be removed from the frames, and the structure should be completely dismantled.
 - (Please note that the locality squall or gust wind speed is affected by factors such as terrain exposure and site elevations.)
- 2.4 The structure may only be erected in regions with wind classifications no greater than the limits specified on the attached wind analysis.
- 2.5 The wind classifications are based upon Terrain Category 2. Considerations have also been made to the regional wind terrain category, topographical location and site shielding from adjacent structures. Please note that in many instances topographical factors such as a location on the crest of a hill or on top of an escarpment may yield a higher wind speed classification than that derived for a higher wind terrain category in a level topographical region. For this reason, particular regard shall be paid to the topographical location of the structure. For localities which do not conform to the standard prescribed descriptions for wind classes as defined above, a qualified Structural Engineer may be employed to determine an appropriate wind class for that the particular site.
- 2.6 The structures in no circumstances shall ever be erected in tropical or severe tropical cyclonic condition as defined on the Map of Australia in AS 1170.2-2011, Figure 3.1.
- 2.7 The tent structure has not been designed to withstand snow and ice loadings such as when erected in alpine regions.
- 2.8 For the projects, where the site conditions approach the design limits, extra consideration should be given to pullout tests of the stakes and professional assessment of the appropriate wind classification for the site.
- 2.9 The tents are stabilized as using roof/wall cross bracing at each end bay and every third bay in between to resist against lateral movement due to wind direction1.
- 2.10 It is important to use 60x60x2.5 profile for all intermediate purlins with spacing not exceeding 1600mm. This means 8 intermediate purlins are required per bay for the 15m tent structure.
- 2.11 It is important to use cable roof bracing for all spans.

Email: hited@bigpond.net.au

3 Specifications

3.1 General

Tent category	
Material	Aluminum 6061-T6

Size	Model
15m x 20m	Event Deluxe 2

Tel: 02 9975 3899 Fax: 02 99751943

3.2 Aluminium Properties

Aluminium Properties		
Compressive yield strength	Fcy	241 MPa
Tensile yield strength	Fty	241 MPa
Tensile ultimate strength	Ftu	262 MPa
Shear yield strength	Fsy	138 MPa
Bearing yield strength	Fby	386 MPa
Bearing ultimate strength	Fbu	552 MPa
Yield stress (min{Fcy:Fty})	Fy	241 MPa
Elastic modulus	Е	70000 MPa
Shear modulus	G	26250 MPa
Value of coefficients	kt	1.00
	kc	1.00
Capacity factor (general yield)	фу	0.95
Capacity factor (ultimate)	φu	0.85
Capacity factor (bending)	φb	0.85
Capacity factor (elastic shear buckling)	φv	0.8
Capacity factor (inelastic shear buckling)	φvp	0.9

3.3 Buckling Constants

Type of member and stresses	Intercept, MPa	Slope, MPa	Intersection
Compression in columns and beam flanges	BC= 242.87	Dc= 1.43	Cc= 69.61
Compression in flat plates	Bp= 310.11	Dp= 2.06	Cp= 61.60
Compressive bending stress in solid rectangular bars	Bbr= 459.89	Dbr= 4.57	Cbr= 67.16
Compressive bending stress in round tubes	Btb= 250.32	Dtb= 14.18	Ctb= 183.52
Shear stress in flat plates	Bs= 178.29	Ds= 0.90	Cs= 81.24

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085 Tel: 02 9975 3899 Fax: 02 99751943

3.4 Section Properties

MEMBER(S)	Section	b	d	t	ус	Ag	Zx	Zy	Sx	Sy	l _x	ly	J	r _x	ry
		mm	mm	mm	mm	mm²	mm³	mm³	mm³	mm³	mm⁴	mm⁴	mm⁴	mm	mm
Rafter	166x88x3	88	166	3	83.0	1488.0	66933.8	47169.5	81432.0	52416.0	5555504.0	2075456.0	4644218.3	61.1	37.3
Upright Support	166x88x3	88	166	3	83.0	1488.0	66933.8	47169.5	81432.0	52416.0	5555504.0	2075456.0	4644218.3	61.1	37.3
Gable Pole	150x120x3	120	150	3	75.0	1584.0	71775.4	63691.2	84024.0	72144.0	5383152.0	3821472.0	6722854.6	58.3	49.1
Gable Beam	80x100x2.5	100	80	2.5	40.0	875.0	23170.6	26161.5	26406.3	30781.3	926822.9	1308072.9	1631340.4	32.5	38.7
Eave & Ridge Beam	80x100x2.5	100	80	2.5	40.0	875.0	23170.6	26161.5	26406.3	30781.3	926822.9	1308072.9	1631340.4	32.5	38.7
Purlin	60x60x2.5	60	60	2.5	30.0	575.0	10581.6	10581.6	12406.3	12406.3	317447.9	317447.9	475273.4	23.5	23.5
Brace	80x80x3	80	80	3	40.0	924.0	22861.3	22861.3	26694.0	26694.0	914452.0	914452.0	1369599.0	31.5	31.5

Tel: 02 9975 3899 Fax: 02 99751943

4 Design Loads

4.1 Ultimate

		Distributed load (kPa)	Design load factor (-)	Factored imposed load (kPa)
Live	Q	-	1.5	-
Self weight	G	self weight	1.35, 1.2, 0.9	1.2 self weight, 0.9 self weight
3s 91.8km/hr gust	W	$0.323~\mathrm{C_{fig}}$	1.0	$0.323~\mathrm{C_{fig}}$

4.2 Load Combinations

4.2.1 Serviceability

Gravity = $1.0 \times G$

Wind = $1.0 \times G + 1.0 \times W$

4.2.2 Ultimate

Downward = $1.35 \times G$

 $= 1.2 \times G + W_u$ $= 1.2 \times G + W_u + W_{IS}$

 $Upward \hspace{1.5cm} = \hspace{1.5cm} 0.9 \times G + W_u$

 $0.9\times G + W_u \!\!+\!\! W_{IP}$

5 Wind Analysis

Wind towards surface (+ve), away from surface (-ve)

5.1 Parameters

Terrain category = 2

Site wind speed $(V_{sit,\beta}) = V_R M_d (M_{z,cat} M_s M_t)$

 $V_R = 25.50 \text{m/s} (91.8 \text{ km/hr})$ (regional 3 s gust wind speed)

 $M_d=1\,$

 $M_s = 1$

 $M_t = 1$

 $M_{z,cat} = 0.91$ (Table 4.1(B) AS1170.2)

 $V_{sit,\beta}\!=23.21~m/s$

Height of structure (h) = 4.25 m

(mid of peak and eave)

Width of structure (w) = 15 mLength of structure (l) = 20 m

D 05 04 12 C C

$$\begin{split} &Pressure~(P) = 0.5 \rho_{air}~(V_{sit,\beta})^2~C_{fig}~C_{dyn} \\ &= 0.323 C_{fig}~kPa \end{split}$$

5.2 Pressure Coefficients (C_{fig})

Name	Symbol	Value	Unit	Notes	Ref.
					8 P a g e

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085 Tel: 02 9975 3899 Fax: 02 99751943

		11	nput		
Importance level		2			Table 3.1 - Table 3.2 (AS1170.0)
Annual probability of exceedance		Temporary			Table 3.3
Regional gust wind speed		91.8	Km/hr		Table 3.1
Regional gust wind speed	V_{R}	25.50	m/s		Table 5.1
Wind Direction Multipliers	Md	1			Table 3.2 (AS1170.2)
Terrain Category Multiplier	$M_{Z,Cat}$	0.91			Table 4.1
Shield Multiplier	Ms	1			4.3 (AS1170.2)
Topographic Multiplier	M_{t}	1			4.4 (AS1170.2)
Site Wind Speed	$V_{\text{Site},\beta}$	23.21	m/s	$V_{Site,\beta}=V_R*M_d*M_{z,cat}*M_S,M_t$	
Pitch	α	18	Deg		
Pitch	α	0.314	rad		
Width	В	15	m		
Width Span	S_{w}	5	m		
Length	D	20	m		
Height	Z	4.25	m		
Bay Span		5	m		
Purlin Spacing		2	m		
Number of Intermediate Purlin		6			
	h/d	0.21			
	h/b	0.28			
		Wind	Pressure	9	
hoair	ρ	1.2	Kg/m ³		
dynamic response factor	C_{dyn}	1			
Wind Pressure	$ ho$ * C_{fig}	0.323	Kg/m ²	ρ =0.5 ρ air*($V_{des,\beta}$) ² * C_{fig} * C_{dyn}	2.4 (AS1170.2)
	WIND DI		=	icular to Length)	
		Interna	l Pressu	re	

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085 Tel: 02 9975 3899 Fax: 02 99751943

Opening Assumption	ith Dominant Op	ening (Cpi= n	Сре	•	
Internal Pressure Coefficier	nt.				
(Without Dominant) MIN	ıı				Table 5.1 A
Internal Pressure Coefficier (Without Dominant) MAX	nt				
Internal Pressure Coefficier (With Dominant) MIN	nt				
Internal Pressure Coefficier (With Dominant) MAX	nt				Table 5.1B
N		0.5		Cpi= N*Cpe	
Combination Factor	$K_{C,i}$	1			
Internal Pressure Coefficier MIN		0.50			
Internal Pressure Coefficier MAX	$C_{p,i}$	0.50			
		Externa	al Pressu	ıre	
1. Windward Wall					
External Pressure Coefficie	ent C _{P,e}	0.7			Table 5.2 A
Area Reduction Factor	Ka	1			Table 5.4
combination factor applied internal pressures	to K _{C,e}	0.8			
local pressure factor	Kı	1			
porous cladding reduction f	actor K _p	1			
aerodynamic shape factor	$C_{\text{fig,e}}$	0.56			
Wind Wall Pressure	Р	0.18	kPa		
Edge Column Force	F	0.45	kN/m		
Intermediate Column Force	· F	0.90	kN/m		
2. Leeward Wall					Table 5.2 B
External Pressure Coefficie	ent C _{P,e}	-0.36			
Area Reduction Factor	Ka	1			Table 5.4
combination factor applied internal pressures	to K _{C,e}	0.8			
local pressure factor	Kı	1			
			_	1	10 P a g a

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085 Tel: 02 9975 3899 Fax: 02 99751943

porous cladding reduction factor	K_p	1	
aerodynamic shape factor	$C_{\text{fig,e}}$	-0.288	
Lee Wall Pressure	Р	-0.09	kPa
Edge Column Force	F	-0.23	kN/m
Intermediate Column Force	F	-0.47	kN/m
3. Side Wall			
Area Reduction Factor	Ka	1	
combination factor applied to	$K_{C,e}$	0.8	
internal pressures			
local pressure factor	Kı	1	
porous cladding reduction factor	K_p	1	
External Pressure Coefficient	$C_{P,e}$	-0.65	
External Pressure Coefficient	$C_{P,e}$	-0.5	
External Pressure Coefficient	$C_{P,e}$	-0.3	
External Pressure Coefficient	$C_{P,e}$	-0.2	
aerodynamic shape factor	$C_{fig,e}$	-0.52	
aerodynamic shape factor	C _{fig,e}	-0.4	
aerodynamic shape factor	$C_{\text{fig,e}}$	-0.24	
aerodynamic shape factor	$C_{fig,e}$	-0.16	
Side Wall Pressure	Р	-0.17	kPa
Side Wall Pressure	Р	-0.13	kPa
Side Wall Pressure	P -	-0.08	kPa
Side Wall Pressure	Р	-0.05	kPa
4. Roof Up Wind Slope			
Area Reduction Factor	Ka	1	
combination factor applied to internal pressures	$K_{C,e}$	0.8	
local pressure factor	K_{l}	1	
porous cladding reduction factor	K_p	1	
External Pressure Coefficient MIN	$C_{P,e}$	-0.38	
External Pressure Coefficient			
MAX	$C_{P,e}$	0.12	
aerodynamic shape factor MIN	$C_{\text{fig,e}}$	-0.30	_
aerodynamic shape factor MAX	$C_{\text{fig,e}} \\$	0.10	
Pressure MIN	Р	-0.10	kPa
Pressure MAX	r P	0.03	kPa

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085 Tel: 02 9975 3899 Fax: 02 99751943

Edge Rafter Force MIN Edge Rafter Force Max Intermediate Rafter Force Intermediate Rafter Force 5. Roof Down Wind Slo Area Reduction Factor combination factor applie internal pressures	e MAX ppe	F F F K _a	-0.25 0.08 -0.49 0.16	kN/m kN/m kN/m kN/m	
local pressure factor porous cladding reduction External Pressure Coeffic aerodynamic shape factor	cient	$\begin{array}{c} K_{l} \\ \\ K_{p} \\ \\ C_{P,e} \\ \\ C_{fig,e} \end{array}$	1 1 -0.56 -0.448		
Pressure MIN Pressure MAX		P P	-0.14 -0.14	kPa kPa	
Edge Rafter Force MIN Edge Rafter Force MAX Intermediate Rafter Force Intermediate Rafter Force		F F F	-0.36 -0.36 -0.72 -0.72	kN/m kN/m kN/m kN/m	
		WIND		l 2 (Parali al Pressu	lel to Length) re
Opening Assumption	With Domin	ant Ope	ning (Cpi= nC	pe	•
Internal Pressure Coeffic (Without Dominant) MIN					
Internal Pressure Coeffic (Without Dominant) MAX Internal Pressure Coeffic (With Dominant) MIN	(
Internal Pressure Coeffic (With Dominant) MAX N Combination Factor	ient	K _{C,i}	0.2 0.5		Срі= N*Ср

12 | P a g e

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085

Email: hited@bigpond.net.au

Tel: 02 9975 3899 Fax: 02 99751943 **Web:** https://cseds.com.au/

Internal Pressure Coefficient	$C_{p,i}$	0.50			
Internal Pressure Coefficient MAX	$C_{\text{p,i}}$	0.50			
		Extern	al Pressu	ire	
1. Windward Wall					Table 5.2 A
External Pressure Coefficient	$C_{P,e}$	0.7			
Area Reduction Factor	Ka	1			Table 5.4
combination factor applied to internal pressures	$K_{C,e}$	0.8			
local pressure factor	K_{l}	1			
porous cladding reduction factor	K_p	1			
aerodynamic shape factor	$C_{\text{fig,e}}$	0.56			
Wind Wall Pressure	Р	0.18	kPa		
Edge Column Force	F	0.45	kN/m		
Intermediate Column Force	F	0.90	kN/m		
2. Leeward Wall					Table 5.2 B
External Pressure Coefficient	$C_{P,e}$	-0.5			
Area Reduction Factor	Ka	1			Table 5.4
combination factor applied to internal pressures	$K_{C,e}$	0.8			
local pressure factor	Kı	1			
porous cladding reduction factor	K_p	1			
aerodynamic shape factor	$C_{\text{fig,e}}$	-0.4			
Lee Wall Pressure	Р	-0.13	kPa		
Edge Column Force	F	-0.32	kN/m		
Intermediate Column Force	F	-0.65	kN/m		
					Table 5.2 C
3. Side Wall					
Area Reduction Factor	Ka	1			Table 5.4
combination factor applied to	K _{C,e}	0.8			
internal pressures					
local pressure factor	Kı	1			
porous cladding reduction factor	K_p	1			
External Pressure Coefficient	$C_{P,e}$	-0.65		0 to 1h	
External Pressure Coefficient	$C_{P,e}$	-0.5		1h to 2h	
					13 P a g A

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085 Tel: 02 9975 3899 Fax: 02 99751943

External Pressure Coefficient	$C_{P,e}$	-0.3		2h to 3h	
External Pressure Coefficient	$C_{P,e}$	-0.2		>3h	
aerodynamic shape factor	$C_{fig,e}$	-0.52		0 to 1h	
aerodynamic shape factor	C _{fig,e}	-0.4		1h to 2h	
•					
Side Wall Pressure	Р	-0.17	kPa	0 to 1h	
Side Wall Pressure	Р	-0.13	kPa	1h to 2h	
Side Wall Pressure	Р	-0.08	kPa	2h to 3h	
Side Wall Pressure	Р	-0.05	kPa	>3h	
4. Roof				α <10 °	
Area Reduction Factor	Ka	1			
	Na	1			Table 5.3 A
combination factor applied to internal pressures	$K_{C,e}$	0.8			
local pressure factor	Kı	1			
porous cladding reduction factor	K_p	1			
External Pressure Coefficient MIN	$C_{P,e}$	-0.90		0 to 0.5h	
External Pressure Coefficient MIN	$C_{P,e}$	-0.90		0.5 to 1h	
External Pressure Coefficient MIN	$C_{\text{P,e}}$	-0.50		1h to 2h	
External Pressure Coefficient MIN	$C_{\text{P,e}}$	-0.30		2h to 3h	
External Pressure Coefficient	$C_{P,e}$	-0.20		>3h	
MIN					
External Pressure Coefficient MAX	$C_{P,e}$	-0.40		0 to 0.5h	
External Pressure Coefficient MAX	$C_{\text{P,e}}$	-0.40		0.5 to 1h	
External Pressure Coefficient MAX	$C_{\text{P,e}}$	0.00		1h to 2h	
External Pressure Coefficient MAX	$C_{P,e}$	0.10		2h to 3h	
External Pressure Coefficient MAX	$C_{P,e}$	0.20		>3h	
aerodynamic shape factor MIN	$C_{\text{fig,e}}$	-0.72		0 to 0.5h	
aerodynamic shape factor MIN	C _{fig,e}	-0.72		0.5 to 1h	
aerodynamic shape factor MIN	C _{fig,e}	-0.4		1h to 2h	

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085 Tel: 02 9975 3899 Fax: 02 99751943

aerodynamic shape factor MIN	$C_{fig,e}$	-0.24		2h to 3h
aerodynamic shape factor MIN	C _{fig,e}	-0.16		>3h
	- ng,0			
aerodynamic shape factor MAX	$C_{fig,e}$	-0.32		0 to 0.5h
aerodynamic shape factor MAX	C _{fig,e}	-0.32		0.5 to 1h
aerodynamic shape factor MAX	$C_{\text{fig,e}}$	0		1h to 2h
aerodynamic shape factor MAX	C _{fig,e}	0.08		2h to 3h
aerodynamic shape factor MAX	$C_{\text{fig,e}}$	0.16		>3h
,	9,-			
Pressure MIN	Р	-0.23	kPa	0 to 0.5h
Pressure MIN	Р	-0.23	kPa	0.5 to 1h
Pressure MIN	Р	-0.13	kPa	1h to 2h
Pressure MIN	Р	-0.08	kPa	2h to 3h
Pressure MIN	Р	-0.05	kPa	>3h
Pressure MAX	Р	-0.10	kPa	0 to 0.5h
Pressure MAX	P	-0.10	kPa	0.5 to 1h
Pressure MAX	P	0.00	kPa	1h to 2h
Pressure MAX	Р	0.03	kPa	2h to 3h
Pressure MAX	Р	0.05	kPa	>3h
Edge Durlin Force MIN	F	-0.23	kN/m	0 to 0.5h
Edge Purlin Force MIN Edge Purlin Force MIN	F	-0.23 -0.23	kN/m	0.5 to 1h
Edge Purlin Force MIN	F	-0.23 -0.13	kN/m	1h to 2h
Edge Purlin Force MIN	F.	-0.08	kN/m	2h to 3h
Edge Purlin Force MIN	F	-0.05	kN/m	>3h
Edge Purlin Force MAX	F	-0.10	kN/m	0 to 0.5h
Edge Purlin Force MAX	F	-0.10	kN/m	0.5 to 1h
Edge Purlin Force MAX	F	0.00	kN/m	1h to 2h
Edge Purlin Force MAX	F -	0.03	kN/m	2h to 3h
Edge Purlin Force MAX	F	0.05	kN/m	>3h
Intermediate Purlin Force MIN	F	-0.47	kN/m	0 to 0.5h
Intermediate Purlin Force MIN	F	-0.47	kN/m	0.5 to 1h
Intermediate Purlin Force MIN	F	-0.26	kN/m	1h to 2h
Intermediate Purlin Force MIN	F	-0.16	kN/m	2h to 3h
Intermediate Purlin Force MIN	F	-0.10	kN/m	>3h
Intermediate Purlin Force MAX	F	-0.21	kN/m	0 to 0.5h
Intermediate Purlin Force MAX	F	-0.21	kN/m	0.5 to 1h
Intermediate Purlin Force MAX	F	0.00	kN/m	1h to 2h
Intermediate Purlin Force MAX	F	0.05	kN/m	2h to 3h
Intermediate Purlin Force MAX	F	0.10	kN/m	>3h

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085 Tel: 02 9975 3899 Fax: 02 99751943

Web: https://cseds.com.au/

Email: hited@bigpond.net.au

5.2.1 Pressure summary

WIND EXTERN	AL PRESSUI	RE	Direction1 (Perper	ndicular to Length)	Direction2 (Parallel to Length)					
Windwa	ırd (kPa)		0.	0.18						
Leewar	Leeward (kPa)			-0.09						
	Length	(m)	(m)	(Kpa)			(Kpa)			
	0 - 1h 0 lewall (m) 1h - 2h 4.25		4.25	-0.17			-0.17			
Sidewall (m)			8.5	-0.13			-0.13			
	2h - 3h 8.5		12.75	-0.08						
	>3h 12.75		-	-0.05						
			Min (Kpa)	Max (Kpa)	Length	(m)	(m)	Min (Kpa)	Max (Kpa)	
	Upwind	Slope	-0.10	0.03	0-0.5h	0.00	2.13	-0.23	-0.10	
Roof	Downwind	d Slope	-0.14	-0.14	-0.14 0.5h-1h		4.25	-0.23	-0.10	
i i i i i i i i i i i i i i i i i i i					1h-2h	4.25	8.50	-0.13	0.00	
					2h-3h	8.50	12.75	-0.08	0.03	
			>3h	12.75	-	-0.05	0.05			
Wind Internal	Droccure (LD	٥)	Min (kPa)	Max (kPa)	Min (kPa)			Max	(kPa)	
vvina internai	riessure (KP	a) 	Proportion of Cpe	Proportion of Cpe	Proportion of Cpe			Proportio	n of Cpe	

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085 Tel: 02 9975 3899 Fax: 02 99751943

5.3 Wind Load Diagrams

5.3.1 Wind 1(case 1)

5.3.2 Wind 1(case 2)

Tel: 02 9975 3899 Fax: 02 99751943

5.3.3 Wind 2(Case1)

5.3.4 Wind 2(case 2)

After 3D model analysis, each member is checked based on adverse load combination. In this regard the maximum bending moment, shear and axial force due to adverse load combinations for each member are presented as below:

Web: https://cseds.com.au/

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085 Tel: 02 9975 3899 Fax: 02 99751943

Email: hited@bigpond.net.au

5.3.5 Max Bending Moment due to critical load combination in major axis

5.3.6 Max Bending Moment in minor axis due to critical load combination

19 | P a g e

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085

Email: hited@bigpond.net.au

Tel: 02 9975 3899 Fax: 02 99751943 **Web:** https://cseds.com.au/

5.3.7 Max Shear in due to critical load combination

5.3.8 Max Axial force in upright support and roof beam due to critical load combination

Tel: 02 9975 3899 Fax: 02 99751943

5.3.9 Max reactions

Max Reaction (Bearing) $N^* = 6.4 \text{ kN}$ Max Reaction (Uplift) $N^* = 8.62 \text{ kN}$

5.3.10 Summary Table:

MEMBER(S)	Section	b	d	t	Vx	Vy	P (Axial)	Mx	Му
		mm	mm	mm	kN	kN	kN	kN.m	kN.m
Rafter	166x88x3	88	166	3	-1.16	0.021	-8.201	-7.23	-0.1184
Upright Support	166x88x3	88	166	3	1.798	0.493	-3.792	-6.8435	-0.1432
Gable Pole	150x120x3	120	150	3	-0.84	-2.844	-6.106	-2.3749	7.4
Gable Beam	80x100x2.5	100	80	2.5	-0	5.3E-16	-9.161	0.4459	-1.837E-17
Eave & Ridge Beam	80x100x2.5	100	80	2.5	0.052	-0.063	-11.871	4.857E-17	0.1816
Purlin	60x60x2.5	60	60	2.5	-0	0.022	-1.349	-1.3016	0.1752
Brace	80x80x3	80	80	3	0.074	-0.073	-4.002	8.046E-17	0.2558

Email: hited@bigpond.net.au

6 Checking Members Based on AS1664.1 ALUMINIUM LSD

6.1 Rafter

NAME	SYMBO L		VALUE	UNIT	NOTES	REF
166x88x3	Rafter					
Alloy and temper	6061-T6					AS1664.
Tension	F_tu	=	262	MPa	Ultimate	T3.3(A)
rension	F_{ty}	=	241	MPa	Yield	
Compression	F _{cy}	=	241	MPa		
Shear	F_su	=	165	MPa	Ultimate	
Sileai	F_{sy}	=	138	MPa	Yield	
Bearing	F_bu	=	551	MPa	Ultimate	
bearing	F_{by}	=	386	MPa	Yield	
Modulus of elasticity	Е	=	70000	MPa	Compressive	
	k t	=	1.0			
	k c	=	1.0			T3.4(B
FEM ANALYSIS RESULTS						
Axial force	Р	=	8.201	kN	compression	
	Р	=	0	kN	Tension	
In plane moment	M_{x}	=	7.23	kNm		
Out of plane moment	M_{y}	=	0.1184	kNm		
DESIGN STRESSES						
Gross cross section area	A_g	=	1488	mm²		
In-plane elastic section modulus	Z_{x}	=	66933.78 3	${\sf mm}^3$		
Out-of-plane elastic section mod.	Z_{y}	=	47169.45 5	mm³		
Stress from axial force	fa	=	P/A _g			
		=	5.51	MPa	compression	
		=	0.00	MPa	Tension	
Stress from in-plane bending	f_{bx}	=	M_x/Z_x			
Others from out of all a		=	108.02	MPa	compression	
Stress from out-of-plane bending	f_{by}	=	M _y /Z _y 2.51	MPa	compression	
Tension			V I	u	2011101000011	

22 | P a g e

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085

Email: hited@bigpond.net.au

Tel: 02 9975 3899 Fax: 02 99751943

	φF _L	= O R	228.95	MPa
	фГ∟	=	222.70	MPa
COMPRESSION				
3.4.8 Compression in columns,	axial, gross	sectio	n	
1. General				
Unsupported length of member	L	=	7900	mm
Effective length factor	k	=	1	
Radius of gyration about buckling axis (Y)	r _y	=	37.35	mm
Radius of gyration about buckling axis (X)	r _x	=	61.10	mm
Slenderness ratio	kLb/ry	=	53.55	
Slenderness ratio	kL/rx	=	129.29	
Slenderness parameter	λ	=	2.415	
Cicricon parameter	D _c *	=	90.3	
	Տ₁*	=	0.33	
	S ₂ *		1.23	
		=		
	фсс	=	0.918	
Factored limit state stress	φF∟	=	37.94	MPa
2. Sections not subject to torsion	nal or torsio	nal-fle	xural bucklin	g
Largest slenderness ratio for flexural buckling	kL/r	=	129.29	
3.4.10 Uniform compression in a flat plates			-	
1. Uniform compression in comp plates with both edges supporte		olumn	s, gross sect	tion - flat
piacos wiai boui eages supporte	u k ₁	=	0.35	
Max. distance between toes of fillets of supporting elements for plate	b'	=	82	
Tot plato	t	=	3	mm
Slenderness	b/t	=	27.33333	
			3	
Limit 1	S ₁	=	12.34	
Limit 2	S_2	=	32.87	

Tel: 02 9975 3899 Fax: 02 99751943

					I
Factored limit state stress	φFL	=	186.87	MPa	
Most adverse compressive limit state stress	Fa	=	37.94	MPa	
Most adverse tensile limit state stress	Fa	=	222.70	MPa	
Most adverse compressive & Tensile capacity factor	f _a /F _a	=	0.15		
BENDING - IN-PLANE					
3.4.15 Compression in beams, extubes, box sections	xtreme fib	re, gros	ss section red	tangular	
Unbraced length for bending	L _b	=	2000	mm	
Second moment of area (weak axis)	ly	=	2.08E+06	mm ⁴	
Torsion modulus	J	=	4.64E+06	${\rm mm^3}$	
Elastic section modulus	Z	=	66933.78 3	mm³	
Slenderness	S	=	86.24		
Limit 1	S ₁	=	0.39		
Limit 2	S_2	=	1695.86		
Factored limit state stress	фҒ∟	=	209.08	MPa	
3.4.17 Compression in componer uniform compression), gross sec supported					
	k ₁	=	0.5		
	k_2	=	2.04		
Max. distance between toes of fillets of supporting elements for plate	b'	=	82	mm	
	t	=	3	mm	
Slenderness	b/t	=	27.33333 3		
Limit 1	S ₁	=	12.34		
Limit 2	S_2	=	46.95		
Factored limit state stress	φF∟	=	186.87	MPa	
Most adverse in-plane bending limit state stress	F _{bx}	=	186.87	MPa	

24 | P a g e

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085

Email: hited@bigpond.net.au

Tel: 02 9975 3899 Fax: 02 99751943

Most adverse in-plane bending capacity factor	f_{bx}/F_{bx}	=	0.58		PASS	
BENDING - OUT-OF-PLANE NOTE: Limit state stresses, ¢F,	are the sea	mo for	out of plana	honding		
(doubly symmetric section)	_ are trie sar	ne ioi	out-or-plane	benuing		
Factored limit state stress	фҒ∟	=	186.87	MPa		
Most adverse out-of-plane bending limit state stress	F _{by}	=	186.87	MPa		
Most adverse out-of-plane bending capacity factor	f _{by} /F _{by}	=	0.01		PASS	
COMBINED ACTIONS						
4.1.1 Combined compression a	nd bending					4.1.1(2)
	Fa	=	37.94	MPa		3.4.8
	га Fao		186.87	мРа		3.4.10
	F _{bx}	=	186.87	MPa		3.4.17
	F _{by}		186.87	мРа		3.4.17
	Гbу	=	100.07	IVIFA		3.4.17
	f_a/F_a	=	0.145			
Check:	$f_a/F_a + f_{bx}/$	F _{bx} + f _b	$_{\text{by}}/F_{\text{by}} \leq 1.0$			4.1.1
i.e.	0.74	≤	1.0		PASS	
SHEAR						
3.4.24 Shear in webs (Major Axis)						4.1.1(2)
Clear web height	h	=	160	mm		
- -	t	=	3	mm		
Slenderness	h/t	=	53.33333 3			
Limit 1	S ₁	=	29.01			
Limit 2	S_2	=	59.31			
Factored limit state stress	φF∟	=	106.47	MPa		
Stress From Shear force	\mathbf{f}_{sx}	=	V/A_w			
3.4.25 Shear in webs (Minor Axis)			0.93	MPa		
Clear web height	b	=	82	mm		

25 | Page

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085

Email: hited@bigpond.net.au

Tel: 02 9975 3899 Fax: 02 99751943

Slenderness	t b/t	=	3 27.33333 3	mm
Factored limit state stress	φF∟	=	131.10	MPa
Stress From Shear force	f_{sy}	=	V/A_w	
			0.02	MPa

6.2 Upright Supports

5.2 Upright Supports NAME	SYMBOL		VALUE	UNIT	NOTES	REF
166x88x3	Upright Support					101001
Alloy and temper	6061-T6					AS1664.
Tension	F_tu	=	262	MPa	Ultimate	T3.3(A)
Torioion	F_{ty}	=	241	MPa	Yield	
Compression	F _{cy}	=	241	MPa		
Shear	F_{su}	=	165	MPa	Ultimate	
Sileai	F_{sy}	=	138	MPa	Yield	
Decrine	F_bu	=	551	MPa	Ultimate	
Bearing	F_by	=	386	MPa	Yield	
Modulus of elasticity	E	=	70000	MPa	Compressive	
	\mathbf{k}_{t}	=	1.0			T2 4/D)
	k _c	=	1.0			T3.4(B)
FEM ANALYSIS RESULTS						
Axial force	Р	=	3.792	kN	compression	
	Р	=	0	kN	Tension	
In plane moment	M_{x}	=	6.8435	kNm		
Out of plane moment	M_{y}	=	0.1432	kNm		
DESIGN STRESSES						
Gross cross section area	A_g	=	1488	mm²		
In-plane elastic section modulus	Z_{x}	=	66933.78 3	mm³		
Out-of-plane elastic section mod.	Z_{y}	=	47169.45 5	mm³		
Stress from axial force	fa	=	P/A _g			
		=	2.55	MPa	compression	

26 | P a g e

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085

Email: hited@bigpond.net.au

Tel: 02 9975 3899 Fax: 02 99751943

		=	0.00	MPa	Tension	
Stress from in-plane	f_{bx}	=	M_x/Z_x			
bending	- 03	=	102.24	MPa	compression	
Stress from out-of-plane	f_{by}	=	M_y/Z_y	IVIFA	Compression	
bending	iby	=	3.04	MPa	compression	
Tension				🕊		
3.4.3 Tension in rectangular tu	ıbes					
	фҒ∟	=	228.95	MPa		
		0				
	4 E	R	222.70	MPa		
	φF∟	=	222.70	IVIFA		
COMPRESSION						
3.4.8 Compression in columns	s, axial, gross s	section				
1. General						3.4.8.1
						3.4.0.1
Unsupported length of member	L	=	3000	mm		
Effective length factor	k	=	1			
Radius of gyration about buckling axis (Y)	r _y	=	37.35	mm		
Radius of gyration about buckling axis (X)	r _x	=	61.10	mm		
Slenderness ratio	kLb/ry	=	80.33			
Slenderness ratio	kL/rx	=	49.10			
Slenderness parameter	λ	=	1.50			
Cierra cirrico parameter	D _c *	=	90.3			
	S ₁ *	=	0.33			
	S ₂ *	=	1.23			
	фсс	=	0.790			
	1					
Factored limit state stress	фГ∟	=	84.59	MPa		
2. Sections not subject to torsi	onal or torsion	al-flexu	al buckling			3.4.8.2
Largest slenderness ratio for flexural buckling	kL/r	=	80.33			
3.4.10 Uniform compression in flat plates	n components	of colun	nns, gross s	section -		
1. Uniform compression in cor		olumns,	gross sectio	on - flat		
plates with both edges suppor			0.05			3.4.10.1
	\mathbf{k}_1	=	0.35			T3.3(D)

Tel: 02 9975 3899 Fax: 02 99751943

Max. distance between toes of fillets of supporting	b'	=	82			
elements for plate						
	t	=	3 27.33333	mm		
Slenderness	b/t	=	3			
Limit 1	S ₁	=	12.34			
Limit 2	S_2	=	32.87			
Factored limit state stress	фГ∟	=	186.87	MPa		
Most adverse compressive limit state stress	Fa	=	84.59	MPa	1	
Most adverse tensile limit state stress	Fa	=	222.70	MPa		
Most adverse compressive & Tensile capacity factor	f _a /F _a	=	0.03		PASS	
BENDING - IN-PLANE						
3.4.15 Compression in beams, 6	extreme fibre	aross	section recta	ngular		
tubes, box sections	sati eme nere	,, g. 000		guiai		
Unbraced length for bending	L_b	=	3000	mm		
Second moment of area (weak axis)	l _y	=	2.08E+06	mm ⁴		
Torsion modulus	J	=	4.64E+06	${\rm mm^3}$		
Elastic section modulus	Z	=	66933.78 3	${\rm mm^3}$		
Slenderness	S	=	129.36			
Limit 1	S ₁	=	0.39			
Limit 2	S_2	=	1695.86			
Factored limit state stress	φF _L	=	204.30	MPa		3.4.15(2)
3.4.17 Compression in compone compression), gross section - fla						
, , , , , , , , , , , , , , , , , , ,	k ₁	=	0.5	- -		T3.3(D)
	k_2	=	2.04			T3.3(D)
Max. distance between toes of fillets of supporting elements for plate	b'	=	82	mm		
·	t	=	3	mm		
Slenderness	b/t	=	27.33333			
Limit 1	S ₁	=	3 12.34			
	J 1	_	12.07		1	<u> </u>

28 | P a g e

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085

Email: hited@bigpond.net.au

Tel: 02 9975 3899 Fax: 02 99751943

	S_2	=	46.95			
Factored limit state stress	φF _L	=	186.87	MPa		
Most adverse in-plane bending limit state stress	F _{bx}	=	186.87	MPa		
Most adverse in-plane bending capacity factor	f _{bx} /F _{bx}	=	0.55		PASS	
BENDING - OUT-OF- PLANE NOTE: Limit state stresses, \$\phi\$ (doubly symmetric section)	- _L are the san	ne for ou	t-of-plane be	ending		
Factored limit state stress	φF _L	=	186.87	MPa		
Most adverse out-of-plane bending limit state stress	F _{by}	=	186.87	MPa		
Most adverse out-of-plane bending capacity factor	f_{by}/F_{by}	=	0.02		PASS	
COMBINED ACTIONS 4.1.1 Combined compression	and bending					4.1.1(2)
	Fa	=	84.59	MPa		3.4.8
	_					
	Fao	=	186.87	MPa		3.4.10
	F _{ao} F _{bx}	=	186.87 186.87	MPa MPa		3.4.10 3.4.17
	F_bx	=	186.87	MPa		3.4.17
Check:	F _{bx} F _{by}	= =	186.87 186.87 0.030	MPa		3.4.17
Check: i.e.	F _{bx} F _{by} f _a /F _a	= =	186.87 186.87 0.030	MPa	PASS	3.4.17
	F_{bx} F_{by} f_a/F_a $f_a/F_a + f_{bx}/F_{bx}$	= = = :+ f _{by} /F _{by}	186.87 186.87 0.030 ≤ 1.0	MPa	PASS	3.4.17
i.e.	F_{bx} F_{by} f_a/F_a $f_a/F_a + f_{bx}/F_{bx}$	= = = :+ f _{by} /F _{by}	186.87 186.87 0.030 ≤ 1.0	MPa	PASS	3.4.17
i.e. SHEAR 3.4.24 Shear in webs (Major	F_{bx} F_{by} f_a/F_a $f_a/F_a + f_{bx}/F_{bx}$	= = = :+ f _{by} /F _{by}	186.87 186.87 0.030 ≤ 1.0 1.0	MPa	PASS	3.4.17
i.e. SHEAR 3.4.24 Shear in webs (Major Axis)	F_{bx} F_{by} f_a/F_a $f_a/F_a + f_{bx}/F_{bx}$ 0.59	= = = x + f _{by} /F _{by} ≤	186.87 186.87 0.030 ≤ 1.0 1.0 160 3 53.33333	MPa MPa	PASS	3.4.17
i.e. SHEAR 3.4.24 Shear in webs (Major Axis) Clear web height	F_{bx} F_{by} f_a/F_a $f_a/F_a + f_{bx}/F_{bx}$ 0.59 h t	= = = x + f _{by} /F _{by} ≤ = =	186.87 186.87 0.030 ≤ 1.0 1.0	MPa MPa	PASS	3.4.17

29 | Page

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085

Email: hited@bigpond.net.au

Tel: 02 9975 3899 Fax: 02 99751943

Factored limit state stress Stress From Shear force 3.4.25 Shear in webs (Minor Axis)	фF _L f _{sx}	=	106.47 V/A _w 0.93	MPa MPa
Clear web height	b t	=	82 3	mm mm
Slenderness	b/t	=	27.33333	
Factored limit state stress	φF∟	=	131.10	MPa
Stress From Shear force	\mathbf{f}_{sy}	=	V/A_w	
			0.02	MPa

6.3 Gable Pole

NAME	SYMBO L		VALUE	UNIT	NOTES	REF
150x120x3	Gable Pole					
Alloy and temper	6061-T6					AS1664. 1
Tension	Ftu	=	262	MPa	Ultimate	T3.3(A)
1 61131011	F_{ty}	=	241	MPa	Yield	
Compression	F_{cy}	=	241	MPa		
Shear	F_{su}	=	165	MPa	Ultimate	
Sileai	F_{sy}	=	138	MPa	Yield	
Bearing	F_{bu}	=	551	MPa	Ultimate	
beamy	F_{by}	=	386	MPa	Yield	
Modulus of elasticity	Е	=	70000	MPa	Compressive	
	\mathbf{k}_{t}	=	1.0			T3.4(B)
	k c	=	1.0			13.4(B)
FEM ANALYSIS RESULTS						
Axial force	Р	=	6.106	kN	compression	
	Р	=	0	kN	Tension	
In plane moment	M_{x}	=	2.3749	kNm		
Out of plane moment	My	=	7.4	kNm		

30 | P a g e

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085

Email: hited@bigpond.net.au

Tel: 02 9975 3899 Fax: 02 99751943 **Web:** https://cseds.com.au/

DESIGN STRESSES						
Gross cross section area	Ag	=	1584	mm²		
In-plane elastic section modulus	Z_{x}	=	71775.36	mm³		
Out-of-plane elastic section mod.	Z_{y}	=	63691.2	mm³		
Stress from axial force	fa	=	P/A _g			
		=	3.85	MPa	compression	
		=	0.00	MPa	Tension	
Stress from in-plane bending	f_{bx}	=	M_x/Z_x			
	_	=	33.09	MPa	compression	
Stress from out-of-plane	f_by	=	M_y/Z_y			
bending		=	116.19	MPa	compression	
Tension						
3.4.3 Tension in rectangular tul			000.05	MDa		
	φF∟	= 0	228.95	MPa		
		R				
	фГ∟	=	222.70	MPa		
COMPRESSION						
3.4.8 Compression in columns,	axial, gross	sectio	n			
1. General						3.4.8.
Unsupported length of member	L	=	4620	mm		
Effective length factor	k	=	1			
Radius of gyration about buckling axis (Y)	\mathbf{r}_{y}	=	49.12	mm		
Radius of gyration about buckling axis (X)	r _x	=	58.30	mm		
Slenderness ratio	kLb/ry	=	61.08			
Slenderness ratio	kL/rx	=	79.25			
Slenderness parameter	λ	=	1.48			
	D _c *	=	90.3			
	S ₁ *	=	0.33			
	S_2^*	=	1.23			
	фсс	=	0.787			
Factored limit state stress	φF∟	=	86.60	MPa		
2. Sections not subject to torsic	nal or torsio	nal fla	vural bucklin	~		3.4.8.2

31 | P a g e

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085

Email: hited@bigpond.net.au

Tel: 02 9975 3899 Fax: 02 99751943

Largest slenderness ratio for flexural buckling	kL/r	=	79.25			
3.4.10 Uniform compression in c flat plates	omponents	s of col	umns, gross	section -		
1. Uniform compression in comp plates with both edges supported		column	s, gross seci	tion - flat		3.4.10.1
	\mathbf{k}_1	=	0.35			T3.3(D)
Max. distance between toes of fillets of supporting elements for plate	b'	=	114			
·	t	=	3	mm		
Slenderness	b/t	=	38			
Limit 1	S_1	=	12.34			
Limit 2	S_2	=	32.87			
Factored limit state stress	φF _L	=	147.86	MPa		
Most adverse compressive limit state stress	Fa	=	86.60	MPa		
Most adverse tensile limit state stress	Fa	=	222.70	MPa		
Most adverse compressive & Tensile capacity factor	f _a /F _a	=	0.04		PASS	
BENDING - IN-PLANE						
3.4.15 Compression in beams, etubes, box sections	extreme fibi	re, gros	ss section red	ctangular		
Unbraced length for bending	L_b	=	3000	mm		
Second moment of area (weak axis)	I_y	=	3821472	mm ⁴		
	J	=	6722854. 6	mm³		
Torsion modulus			_	mm³		
,	Z	=	71775.36			
Torsion modulus		=	84.96			
Torsion modulus Elastic section modulus	Z			***************************************		
Torsion modulus Elastic section modulus Slenderness	Z S	=	84.96			

32 | P a g e

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085

Email: hited@bigpond.net.au

Tel: 02 9975 3899 Fax: 02 99751943

supported	tion - flat p	lates w	ith both edg	der Jes		
	\mathbf{k}_1	=	0.5			T3.3(D
	k_2	=	2.04			T3.3(D
Max. distance between toes of fillets of supporting elements for plate	b'	=	114	mm		
	t	=	3	mm		
Slenderness	b/t	=	38			
Limit 1	S ₁	=	12.34			
Limit 2	S_2	=	46.95			
Factored limit state stress	φF_{L}	=	156.92	MPa		
Most adverse in-plane bending limit state stress	F _{bx}	=	156.92	MPa		
Most adverse in-plane bending capacity factor	f _{bx} /F _{bx}	=	0.21		PASS	
BENDING - OUT-OF-PLANE	th		t of plane	h a m alima		
NOTE: Limit state stresses, ϕF_L (doubly symmetric section)	are the san	ne for c	out-of-plane	bending		
NOTE: Limit state stresses, φF _L	are the san φF _L	ne for d =	out-of-plane 156.92	bending MPa		
NOTE: Limit state stresses, φF _L (doubly symmetric section)			•			
NOTE: Limit state stresses, φF _L (doubly symmetric section) Factored limit state stress Most adverse out-of-plane	фҒ∟	=	156.92	МРа	PASS	
NOTE: Limit state stresses, φF _L (doubly symmetric section) Factored limit state stress Most adverse out-of-plane bending limit state stress Most adverse out-of-plane bending capacity factor	φF _L	=	156.92	МРа	PASS	
NOTE: Limit state stresses, φF _L (doubly symmetric section) Factored limit state stress Most adverse out-of-plane bending limit state stress Most adverse out-of-plane	φF _L F _{by} f _{by} /F _{by}	=	156.92	МРа	PASS	
NOTE: Limit state stresses, φF _L (doubly symmetric section) Factored limit state stress Most adverse out-of-plane bending limit state stress Most adverse out-of-plane bending capacity factor	φF _L F _{by} f _{by} /F _{by}	=	156.92	МРа	PASS	4.1.1(2 3.4.
NOTE: Limit state stresses, φF _L (doubly symmetric section) Factored limit state stress Most adverse out-of-plane bending limit state stress Most adverse out-of-plane bending capacity factor	φF _L F _{by} f _{by} /F _{by}	= =	156.92 156.92 0.74	MPa MPa	PASS	4.1.1(2
NOTE: Limit state stresses, φF _L (doubly symmetric section) Factored limit state stress Most adverse out-of-plane pending limit state stress Most adverse out-of-plane pending capacity factor	φF _L F _{by} f _{by} /F _{by} d bending F _a	= = =	156.92 156.92 0.74	MPa MPa	PASS	4.1.1(2 3.4. 3.4.1
NOTE: Limit state stresses, φF _L (doubly symmetric section) Factored limit state stress Most adverse out-of-plane bending limit state stress Most adverse out-of-plane bending capacity factor	φF _L F _{by} f _{by} /F _{by} d bending F _a F _{ao}	= = = = =	156.92 156.92 0.74 86.60 147.86	MPa MPa MPa MPa	PASS	4.1.1(2 3.4. 3.4.1 3.4.1
NOTE: Limit state stresses, φF _L (doubly symmetric section) Factored limit state stress Most adverse out-of-plane bending limit state stress Most adverse out-of-plane bending capacity factor	φF _L F _{by} f _{by} /F _{by} d bending F _a F _{ao} F _{bx}	= = = = = = = = = = = = = = = = = = = =	156.92 156.92 0.74 86.60 147.86 156.92	MPa MPa MPa MPa MPa	PASS	4.1.1(2 3.4. 3.4.1 3.4.1
NOTE: Limit state stresses, ϕF_L (doubly symmetric section) Factored limit state stress Most adverse out-of-plane bending limit state stress Most adverse out-of-plane bending capacity factor COMBINED ACTIONS 4.1.1 Combined compression and	φF _L F _{by} f _{by} /F _{by} d bending F _a F _{ao} F _{bx} F _{by}	= = = = = = = =	156.92 156.92 0.74 86.60 147.86 156.92 156.92 0.045	MPa MPa MPa MPa MPa	PASS	4.1.1(2 3.4.

33 | P a g e

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085

Email: hited@bigpond.net.au

Tel: 02 9975 3899 Fax: 02 99751943

SHEAR				
3.4.24 Shear in webs (Major Axis)				
Clear web height	h	=	144	mm
	t	=	3	mm
Slenderness	h/t	=	48	
Limit 1	S ₁	=	29.01	
Limit 2	S_2	=	59.31	
Factored limit state stress	φF∟	=	111.87	MPa
Stress From Shear force	f_{sx}	=	V/A_w	
			0.88	MPa
3.4.25 Shear in webs (Minor Axis)				
Clear web height	b	=	114	mm
	t	=	3	mm
Slenderness	b/t	=	38	
Factored limit state stress	φF∟	=	122.00	MPa
Stress From Shear force	\mathbf{f}_{sy}	=	V/A_w	
			0.02	MPa

6.4 Ridge & Eave Purlin

NAME	SYMBOL		VALUE	UNIT	NOTES	REF
80x100x2.5	Gable Beam					
Alloy and temper	6061-T6					AS1664. 1
Tanaian	Ftu	=	262	MPa	Ultimate	T3.3(A)
Tension	F_{ty}	=	241	MPa	Yield	
Compression	F _{cy}	=	241	MPa		
Chass	F _{su}	=	165	MPa	Ultimate	
Shear	F _{sy}	=	138	MPa	Yield	
Descripe	F _{bu}	=	551	MPa	Ultimate	
Bearing	F_by	=	386	MPa	Yield	
Modulus of elasticity	E	=	70000	MPa	Compressive	
	\mathbf{k}_{t}	=	1.0			T3.4(B)

34 | P a g e

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085

Email: hited@bigpond.net.au

Tel: 02 9975 3899 Fax: 02 99751943

	k _c	=	1.0			
FEM ANALYSIS RESULTS						
Axial force	Р	=	9.161	kN	compression	
	Р	=	0	kN	Tension	
In plane moment	M_{x}	=	0.4459	kNm		
Out of plane moment	M_{y}	=	1.837E-17	kNm		
DESIGN STRESSES						
Gross cross section area	Ag	=	875	mm²		
In-plane elastic section modulus	Z_{x}	=	23170.57 3	mm³		
Out-of-plane elastic section mod.	Z_{y}	=	26161.45 8	mm³		
Stress from axial force	fa	=	P/A _g			
		=	10.47	MPa	compression	
		=	0.00	MPa	Tension	
Stress from in-plane bending	f_{bx}	=	M_x/Z_x			
	_	=	19.24	MPa	compression	
Stress from out-of-plane bending	f _{by}	=	M _y /Z _y 0.00	MPa	compression	
Tension			0.00	4	o o mproconom	
3.4.3 Tension in rectangular tub	es					
ŭ	φF _L	=	228.95	MPa		
	• -	0				
		R				
	φF∟	=	222.70	MPa		
COMPRESSION						
3.4.8 Compression in columns,	axial, gross	sectio	n			2 4 9 1
	axial, gross	sectio	n			3.4.8.1
3.4.8 Compression in columns,1. GeneralUnsupported length of	axial, gross L	sectio	n 5000	mm		3.4.8.1
3.4.8 Compression in columns,1. GeneralUnsupported length of member	-			mm		3.4.8.1
3.4.8 Compression in columns,1. GeneralUnsupported length of memberEffective length factorRadius of gyration about	L	=	5000	mm mm		3.4.8.1
3.4.8 Compression in columns, 1. General Unsupported length of member Effective length factor Radius of gyration about buckling axis (Y) Radius of gyration about	L k	=	5000			3.4.8.1
3.4.8 Compression in columns, 1. General Unsupported length of member Effective length factor Radius of gyration about buckling axis (Y)	L k ry r _x	= = =	5000 1 38.66	mm		3.4.8.1
3.4.8 Compression in columns, 1. General Unsupported length of member Effective length factor Radius of gyration about buckling axis (Y) Radius of gyration about buckling axis (X)	L k r _y	= = =	5000 1 38.66 32.55	mm		3.4.8.1

35 | P a g e

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085

Email: hited@bigpond.net.au

Tel: 02 9975 3899 Fax: 02 99751943

	D _c *	=	90.3			
	S ₁ *	=	0.33			
	S_2^*	=	1.23			
	фсс	=	0.950			
Factored limit state stress	φF _L	=	27.81	MPa		
2. Sections not subject to torsion	al or torsic	onal-flex	rural buckling	g		3.4.8.2
Largest slenderness ratio for flexural buckling	kL/r	=	153.63			
3.4.10 Uniform compression in conflat plates	omponent	s of colu	ımns, gross	section -		
1. Uniform compression in comp		columns	s, gross sect	tion - flat		3.4.10.1
plates with both edges supported			0.05			
Mar Patricia but according	k ₁	=	0.35			T3.3(D)
Max. distance between toes of fillets of supporting elements for plate	b'	=	95			
	t	=	2.5	mm		
Slenderness	b/t	=	38			
Limit 1	S ₁	=	12.34			
Limit 2	S_2	=	32.87			
Factored limit state stress	φF∟	=	147.86	MPa		
Most adverse compressive limit state stress	Fa	=	27.81	MPa		
Most adverse tensile limit state stress	Fa	=	222.70	MPa		
Most adverse compressive & Tensile capacity factor	f _a /F _a	=	0.38		PASS	
BENDING - IN-PLANE						
3.4.15 Compression in beams, et tubes, box sections	xtreme fibi	re, gros	s section red	ctangular		
Unbraced length for bending	Lb	=	5000	mm		
Second moment of area (weak axis)	ly	=	1308072. 9	mm ⁴		
Torsion modulus	J	=	1631340. 4	mm³		
Elastic section modulus	Z	=	23170.57 3	mm³		

36 | P a g e

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085

Email: hited@bigpond.net.au

Tel: 02 9975 3899 Fax: 02 99751943

S	=	158.62			
S ₁	=	0.39			
S_2	=	1695.86			
φF _L	=	201.50	МРа		3.4.15(2)
\mathbf{k}_1	=	0.5			T3.3(D)
k_2	=	2.04			T3.3(D)
b'	=	95	mm		
t	=	2.5	mm		
	=				
	=				
S ₂	=	46.95			
φF∟	=	156.92	МРа		
F _{bx}	=	156.92	MPa		
f_{bx}/F_{bx}	=	0.12		PASS	
are the san	ne for o	ut-of-plane	bending		
фҒ∟	=	156.92	MPa		
F_by	=	156.92	MPa		
F _{by}	=	0.00	MPa	PASS	
-			MPa	PASS	
-			MPa	PASS	4.1.1(2)
f _{by} /F _{by}	-		MPa MPa	PASS	4.1.1(2) 3.4.8
	F _{bx}	S_2 = ϕF_L = ents of beams (conction - flat plates where K_1 = K_2 = K_2 = K_3 = K_4 = K_4 = K_4 = K_5 = K_6 = K_7 = K_8	$egin{array}{lll} S_2 & = & 1695.86 \\ egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{lll} & = & 201.50 \\ \hline \end{array} \end{array}$ ents of beams (component unoction - flat plates with both edgent in the edgent	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{lll} S_2 & = & 1695.86 \\ egin{array}{lll} egin{array} egin{array}{lll} egin{array} $

37 | P a g e

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085

Email: hited@bigpond.net.au

Tel: 02 9975 3899 Fax: 02 99751943

	F_bx	=	156.92	MPa		3.4.17
	F_{by}	=	156.92	MPa		3.4.17
	f_a/F_a	=	0.376			
Check:	$f_a/F_a + f_{bx}/$	F _{bx} + f _{by} /	$F_{by} \leq 1.0$			4.1.1
i.e.	0.50	≤	1.0		PASS	(6)
SHEAR						
3.4.24 Shear in webs (Major Axis)						4.1.1(2)
Clear web height	h	=	75	mm		
	t	=	2.5	mm		
Slenderness	h/t	=	30			
Limit 1	S_1	=	29.01			
Limit 2	S ₂	=	59.31			
Factored limit state stress	фҒ∟	=	130.09	MPa		
Stress From Shear force	f_{sx}	=	V/A_w			
			1.59	MPa		
3.4.25 Shear in webs (Minor Axis)						
Clear web height	b	=	95	mm		
	t	=	2.5	mm		
Slenderness	b/t	=	38			
Factored limit state stress	φF_{L}	=	122.00	MPa		
Stress From Shear force	f_{sy}	=	V/A_w			
			0.03	MPa		

6.5 Gable Beam

NAME	SYMBOL		VALUE	UNIT	NOTES	REF
80x100x2.5	Eave & Ridge Beam					
Alloy and temper	6061-T6					AS1664. 1
Tanaian	Ftu	=	262	MPa	Ultimate	T3.3(A)
Tension	F_{ty}	=	241	MPa	Yield	
Compression	F _{cy}	=	241	MPa		
Shear	F _{su}	=	165	MPa	Ultimate	

38 | P a g e

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085

Email: hited@bigpond.net.au

Tel: 02 9975 3899 Fax: 02 99751943

Web: https://cseds.com.au/

					ı	
	F_{sy}	=	138	MPa	Yield	
Desire	F_bu	=	551	MPa	Ultimate	
Bearing	F_by	=	386	MPa	Yield	
Modulus of elasticity	Е	=	70000	MPa	Compressive	
			4.0			
	k _t	=	1.0			T3.4(B)
	k c	=	1.0			
FEM ANALYSIS RESULTS						
Axial force	Р	=	11.871	kN	compression	
	Р	=	0	kN	Tension	
In plane moment	M_{x}	=	4.857E-17	kNm		
Out of plane moment	M_{y}	=	0.1816	kNm		
DESIGN STRESSES						
Gross cross section area	A_g	=	875	mm ²		
In-plane elastic section modulus	Z_{x}	=	23170.57 3	${\rm mm^3}$		
Out-of-plane elastic section	7		26161.45	mm³		
mod.	Z_{y}	=	8	IIIII		
Stress from axial force	f _a	=	P/A _g			
		=	13.57	MPa	compression	
Stress from in-plane		=	0.00	MPa	Tension	
bending	f_{bx}	=	M_x/Z_x			
		=	0.00	MPa	compression	
Stress from out-of-plane	f_{by}	=	M_y/Z_y			
bending		=	6.94	MPa	compression	
Tension						
3.4.3 Tension in rectangular tubes						
	фҒ∟	=	228.95	MPa		
		O R				
	φF∟	=	222.70	MPa		
	• -					
COMPRESSION						
3.4.8 Compression in columns, as	kial, gross s	section				
1. General						3.4.8.1
						5.4.0.1
Unsupported length of	L	=	5000	mm		
member	_	_	3000	111111		

39 | P a g e

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085

Email: hited@bigpond.net.au

Tel: 02 9975 3899 Fax: 02 99751943

					İ	ı
Effective length factor	k	=	1			
Radius of gyration about buckling axis (Y)	\mathbf{r}_{y}	=	38.66	mm		
Radius of gyration about buckling axis (X)	r _x	=	32.55	mm		
Slenderness ratio	kLb/ry	=	129.32			
Slenderness ratio	kL/rx	=	153.63			
Slenderness parameter	λ	=	2.87			
	D _c *	=	90.3			
	S ₁ *	=	0.33			
	S ₂ *	=	1.23			
	фсс	=	0.950			
Factored limit state stress	фГ∟	=	27.81	МРа		
2. Sections not subject to torsion	onal or torsiona	al-flexura	al buckling			3.4.8.2
Largest slenderness ratio for flexural buckling	kL/r	=	153.63			0.110.2
3.4.10 Uniform compression in flat plates1. Uniform compression in com						
plates with both edges support		iuiriiis, g	1033 36011011	- nat		3.4.10.1
, , ,	\mathbf{k}_1	=	0.35			T3.3(D)
Max. distance between toes of fillets of supporting elements for plate	b'	=	95			
	t	=	2.5	mm		
Slenderness	b/t	=	38			
Limit 1	S_1	=	12.34			
Limit 2	S ₂	=	32.87			
Factored limit state stress	фҒ∟	=	147.86	MPa		
Most adverse compressive limit state stress	Fa	=	27.81	MPa		
Most adverse tensile limit state stress	Fa	=	222.70	MPa		
Most adverse compressive & Tensile capacity factor	f _a /F _a	=	0.49		PASS	
BENDING - IN-PLANE						

40 | P a g e

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085

Email: hited@bigpond.net.au

Tel: 02 9975 3899 Fax: 02 99751943

Unbraced length for bending	L_b	=	5000	mm			
Second moment of area (weak axis)	ly	=	1308072. 9	mm ⁴			
Torsion modulus	J	=	1631340. 4	mm³			
Elastic section modulus	Z	=	23170.57 3	${\rm mm^3}$			
Slenderness	S	=	158.62				
Limit 1	S ₁	=	0.39				
Limit 2	S ₂	=	1695.86				
Factored limit state stress	φF _L	=	201.50	MPa		3.4	 l.15(2)
3.4.17 Compression in compocompression), gross section -	flat plates with	both edg	ges supporte				0.0/5
	k ₁	=	0.5				3.3(D
	k_2	=	2.04			T	3.3(D)
Max. distance between toes of fillets of supporting elements for plate	b'	=	95	mm			
	t	=	2.5	mm			
Slenderness	b/t	=	38				
Limit 1	S ₁	=	12.34				
Limit 2	S ₂	=	46.95				
			156.92	MPa			
Factored limit state stress	фҒ∟	=	156.92				
Most adverse in-plane	φF L F _{bx}	=	156.92	MPa			
Most adverse in-plane bending limit state stress Most adverse in-plane	·			MPa	PASS		
Most adverse in-plane bending limit state stress Most adverse in-plane bending capacity factor	F _{bx}	=	156.92	MPa	PASS		
Factored limit state stress Most adverse in-plane bending limit state stress Most adverse in-plane bending capacity factor BENDING - OUT-OF-PLANE NOTE: Limit state stresses, \$\phi F(doubly symmetric section)	F _{bx}	=	156.92 0.00		PASS		

41 | P a g e

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085

Email: hited@bigpond.net.au

Tel: 02 9975 3899 Fax: 02 99751943

Most adverse out-of-plane bending limit state stress	F_{by}	=	156.92	MPa		
Most adverse out-of-plane bending capacity factor	f_{by}/F_{by}	=	0.04		PASS	
COMPINED ACTIONS						
COMBINED ACTIONS						
4.1.1 Combined compression	n and bending					4.1.1(2)
	Fa	=	27.81	MPa		3.4.8
	Fao	=	147.86	MPa		3.4.10
	F _{bx}	=	156.92	MPa		3.4.17
	F_{by}	=	156.92	MPa		3.4.17
	f _a /F _a	=	0.488			
Check:	$f_a/F_a + f_{bx}/F_{bx} +$	f _{by} /F _{by} ≤	1.0			4.1.1
i.e.	0.53	≤	1.0		PASS	(3)
SHEAR						
3.4.24 Shear in webs (Major Axis)						4.1.1(2)
Clear web height	h	=	75	mm		
	t	=	2.5	mm		
Slenderness	h/t	=	30			
Limit 1	S ₁	=	29.01			
Limit 2	S_2	=	59.31			
Factored limit state stress	φF∟	=	130.09	MPa		
Stress From Shear force	f_{sx}	=	V/A_w			
3.4.25 Shear in webs (Minor Axis)			1.59	MPa		
Clear web height	b	=	95	mm		
Slenderness	t b/t	=	2.5 38	mm		
Factored limit state stress	φF _L	=	122.00	MPa		
Stress From Shear force	f_{sy}	=	V/A _w 0.03	MPa		

42 | P a g e ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085

Tel: 02 9975 3899 Fax: 02 99751943

Email: hited@bigpond.net.au Web: https://cseds.com.au/

6.6 Intermediate Purlin

NAME	SYMBO L		VALUE	UNIT	NOTES	REF
60x60x2.5	Purlin					
Alloy and temper	6061-T6					AS1664. 1
Tanaian	F_{tu}	=	262	MPa	Ultimate	T3.3(A)
Tension	F_{ty}	=	241	MPa	Yield	
Compression	F_{cy}	=	241	MPa		
Chaor	F_su	=	165	MPa	Ultimate	
Shear	F_{sy}	=	138	MPa	Yield	
	F_bu	=	551	MPa	Ultimate	
Bearing	F_by	=	386	MPa	Yield	
Modulus of elasticity	E	=	70000	MPa	Compressive	
	\mathbf{k}_{t}	=	1.0			
	k c	=	1.0			T3.4(B)
FEM ANALYSIS RESULTS						
Axial force	Р	=	1.349	kN	compression	
	Р	=	0	kN	Tension	
In plane moment	M_{x}	=	1.3016	kNm		
Out of plane moment	M_{y}	=	0.1752	kNm		
DESIGN STRESSES						
Gross cross section area	A_g	=	575	mm^2		
In-plane elastic section modulus	Z_{x}	=	10581.59 7	mm³		
Out-of-plane elastic section mod.	Z_{y}	=	10581.59 7	mm³		
Stress from axial force	fa	=	P/A _g			
		=	2.35	MPa	compression	
		=	0.00	MPa	Tension	
Stress from in-plane bending	f_{bx}	=	M _x /Z _x			
		=	123.01	MPa	compression	
Stress from out-of-plane bending	\mathbf{f}_{by}	=	M _y /Z _y	MDo	compronsion	
Tension		_	16.56	MPa	compression	
3.4.3 Tension in rectangular tub	A S					
7.7.3 Tension in rectangular tub	φF _L	=	228.95	MPa		

43 | P a g e

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085

Email: hited@bigpond.net.au

Tel: 02 9975 3899 Fax: 02 99751943

Web: https://cseds.com.au/

		0		
		R		
	φF∟	=	222.70	MPa
COMPRESSION				
3.4.8 Compression in columns,	axial, gross	section	7	
1. General				
Unsupported length of member	L	=	5000	mm
Effective length factor	k	=	1	
Radius of gyration about buckling axis (Y)	\mathbf{r}_{y}	=	23.50	mm
Radius of gyration about buckling axis (X)	\mathbf{r}_{x}	=	23.50	mm
Slenderness ratio	kLb/ry	=	212.80	
Slenderness ratio	kL/rx	=	212.80	
Slenderness parameter	λ	=	3.97	
parameter parameter	D _c *	=	90.3	
	S ₁ *	=	0.33	
	S ₂ *	=	1.23	
	фсс	=	0.950	
	₹**		0.000	
Factored limit state stress	φF∟	=	14.49	MPa
2. Sections not subject to torsion	nal or torsio	nal-flex	rural bucklir	ng
Largest slenderness ratio for flexural buckling	kL/r	=	212.80	
3.4.10 Uniform compression in a flat plates	components	of colu	ımns, gross	s section -
1. Uniform compression in comp plates with both edges supporte		olumns	s, gross sec	tion - flat
	k_1	=	0.35	
Max. distance between toes of				
fillets of supporting elements for plate	b'	=	55	
	t	=	2.5	mm
Slenderness	b/t	=	22	
Limit 1	S ₁	=	12.34	
Limit 2	S_2		32.87	

Tel: 02 9975 3899 Fax: 02 99751943

Factored limit state stress	φF∟	=	201.84	MPa		
Most adverse compressive limit state stress	Fa	=	14.49	MPa		
Most adverse tensile limit state stress	Fa	=	222.70	MPa		
Most adverse compressive & Tensile capacity factor	f _a /F _a	=	0.16		PASS	
BENDING - IN-PLANE						
3.4.15 Compression in beams, extubes, box sections	xtreme fibi	re, gros	ss section red	ctangular		
Unbraced length for bending	L_b	=	5000	mm		
Second moment of area (weak axis)	l _y	=	317447.9 2	mm ⁴		
Torsion modulus	J	=	475273.4 4	mm³		
Elastic section modulus	Z	=	10581.59 7	mm³		
Slenderness	S	=	272.42			
Limit 1	S_1	=	0.39			
Limit 2	S_2	=	1695.86			
Factored limit state stress	φFL	=	192.53	MPa		 3.4.15(2)
3.4.17 Compression in componer uniform compression), gross sec supported						
••	\mathbf{k}_1	=	0.5			T3.3(D)
	k ₂	=	2.04			T3.3(D)
Max. distance between toes of fillets of supporting elements for plate	b'	=	55	mm		. 3.3(3)
·	t	=	2.5	mm		
Slenderness	b/t	=	22			
Limit 1	S_1	=	12.34			
Limit 2	S_2	=	46.95			
Factored limit state stress	φF _L	=	201.84	MPa		
Most adverse in-plane bending limit state stress	F _{bx}	=	192.53	MPa	1	

45 | P a g e

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085

Email: hited@bigpond.net.au

Tel: 02 9975 3899 Fax: 02 99751943

Most adverse in-plane bending capacity factor	f _{bx} /F _{bx}	=	0.64		PASS	
BENDING - OUT-OF-PLANE						
NOTE: Limit state stresses, φF _L (doubly symmetric section)	are the sai	me for c	out-of-plane	bending		
Factored limit state stress	φFL	=	192.53	MPa		
Most adverse out-of-plane bending limit state stress	F _{by}	=	192.53	MPa		
Most adverse out-of-plane bending capacity factor	f _{by} /F _{by}	=	0.09		PASS	
COMBINED ACTIONS						
4.1.1 Combined compression a	nd bending					4.1.1(2)
	F _a		14.49	MPa		3.4.8
	F _{ao} F _{bx}	=	201.84 192.53	MPa MPa		3.4.10
	F _{by}	=	192.53	MPa		3.4.17
	. by	_	102.00	WII G		0 7
	f _a /F _a	=	0.162			
Check:	$f_a/F_a + f_{bx}/$	F _{bx} + f _{by}	$/F_{by} \leq 1.0$			4.1.1
i.e.	0.89	≤	1.0		PASS	(6)
SHEAR						
3.4.24 Shear in webs (Major Axis)						4.1.1(2)
Clear web height	h	=	55	mm		
	t	=	2.5	mm		
Slenderness Limit 1	h/t S₁	=	22 29.01			
Limit 2	S ₁	=	59.31			
	3 2	_	00.01			
Factored limit state stress	φF _L	=	131.10	MPa		
Stress From Shear force	f_{sx}	=	V/A _w			
3.4.25 Shear in webs (Minor			2.42	MPa		
Axis)						

46 | P a g e

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085

Email: hited@bigpond.net.au

Tel: 02 9975 3899 Fax: 02 99751943

Slenderness	t b/t	=	2.5 22	mm
Factored limit state stress	фҒ∟	=	131.10	MPa
Stress From Shear force	f_{sy}	=	V/A_w	
			0.04	MPa

6.7 Brace

NAME	SYMBO L		VALUE	UNIT	NOTES	REF
60x60x2.5	Brace					
Alloy and temper	6061-T6					AS1664. 1
	Ftu	=	262	MPa	Ultimate	T3.3(A)
Tension	F_{ty}	=	241	MPa	Yield	
Compression	F _{cy}	=	241	MPa		
Chaor	F_su	=	165	MPa	Ultimate	
Shear	F_{sy}	=	138	MPa	Yield	
Bearing	F_bu	=	551	MPa	Ultimate	
bearing	F_by	=	386	MPa	Yield	
Modulus of elasticity	Е	=	70000	MPa	Compressive	
	k t	=	1.0			TO 4/D)
	k c	=	1.0			T3.4(B)
FEM ANALYSIS RESULTS						
Axial force	Р	=	4.002	kN	compression	
	Р	=	0	kN	Tension	
In plane moment	M_{x}	=	8.046E-17	kNm		
Out of plane moment	M_y	=	0.2558	kNm		
DESIGN STRESSES						
Gross cross section area	A_g	=	924	mm^2		
In-plane elastic section modulus	Zx	=	22861.3	mm³		
Out-of-plane elastic section mod.	Z_{y}	=	22861.3	mm³		
Stress from axial force	fa	=	P/A _g			
		=	4.33	MPa	compression	
		=	0.00	MPa	Tension	

47 | Page

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085

Email: hited@bigpond.net.au

Tel: 02 9975 3899 Fax: 02 99751943

Web: https://cseds.com.au/

Stress from in-plane bending	f _{bx}	=	M _x /Z _x 0.00	MPa	compression	
Stress from out-of-plane bending	f _{by}	=	M _y /Z _y 11.19	MPa	compression	
Tension						
3.4.3 Tension in rectangular tub	es					
	φF _L	= O R	228.95	MPa		
	фF∟	=	222.70	MPa		
COMPRESSION						
3.4.8 Compression in columns,	axial, gross	section	า			
1. General						3.4.8.1
Unsupported length of member	L	=	5830	mm		
Effective length factor	k	= [1			
Radius of gyration about buckling axis (Y)	r_y	=	31.46	mm		
Radius of gyration about buckling axis (X)	r_{x}	=	31.46	mm		
Slenderness ratio	kLb/ry	=	185.32			
Slenderness ratio	kL/rx	=	185.32			
Slenderness parameter	λ	=	3.46			
·	D _c *	=	90.3			
	S ₁ *	=	0.33			
	S_2^*	=	1.23			
	фсс	=	0.950			
Factored limit state stress	φF _L	=	19.11	MPa		
2. Sections not subject to torsio	nal or torsio	nal-flex	kural bucklir	ng		3.4.8.2
Largest slenderness ratio for flexural buckling	kL/r	=	185.32			57 11012
3.4.10 Uniform compression in flat plates	components	of col	umns, gross	s section -		
Uniform compression in complates with both edges supported		olumns	s, gross sec	tion - flat		3.4.10.1
. 3 ,,,,	\mathbf{k}_1	=	0.35			T3.3(D)

48 | P a g e

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085

Email: hited@bigpond.net.au

Tel: 02 9975 3899 Fax: 02 99751943

Slenderness	b/t	=	24.00000 7			
•	t	=	3 24.66666	mm		
Max. distance between toes of fillets of supporting elements for plate	b'	=	74	mm		
	\mathbf{k}_2	=	2.04			T3.3(D)
	k ₁	=	0.5			T3.3(D)
3.4.17 Compression in componer uniform compression), gross sect supported			vith both edg			
Factored limit state stress	фГ∟	=	194.99	MPa		3.4.15(2)
Limit 2	S ₂	=	1695.86			
Limit 1	S ₁	=	0.39			
Slenderness	S	=	238.19	1111117		
Torsion modulus Elastic section modulus	J Z	=	1369599 22861.3	mm³ mm³		
axis)	l _y	=	914452	mm ⁴		
Unbraced length for bending Second moment of area (weak	L _b	=	5830	mm		
3.4.15 Compression in beams, extubes, box sections	ktreme tibi	re, gros	ss section red	ctangular		
BENDING - IN-PLANE						
Most adverse compressive & Tensile capacity factor	f _a /F _a	=	0.23		PASS	
Most adverse tensile limit state stress	Fa	=	222.70	MPa		
Most adverse compressive limit state stress	Fa	=	19.11	MPa		
Factored limit state stress	фГ∟	=	194.35	MPa		
Limit 2	S_2	=	32.87			
Limit 1	S ₁	=	12.34			
Slenderness	b/t	=	7			
	t	=	3 24.66666	mm		
fillets of supporting elements for plate	b'	=	74			

49 | P a g e

Tel: 02 9975 3899 Fax: 02 99751943

Web: https://cseds.com.au/

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085

Email: hited@bigpond.net.au

Limit 1	S ₁	=	12.34		1	1
Limit 2	S ₂	=	46.95			
Factored limit state stress	φF∟	=	194.35	MPa		
Most adverse in plans						
Most adverse in-plane bending limit state stress	F_{bx}	=	194.35	MPa		
Most adverse in-plane	f _{bx} /F _{bx}	=	0.00		PASS	
bending capacity factor	TDX T DX	_	0.00		17.03	
BENDING - OUT-OF-PLANE						
NOTE: Limit state stresses, φF _L	are the sai	me for d	out-of-plane	bending		
(doubly symmetric section)						
Footored limit state stress	45		404.05	MDe		
Factored limit state stress	φF∟	=	194.35	MPa		
Most adverse out-of-plane	E.		194.35	MPa		
bending limit state stress	F_{by}	=	194.33	IVIFA		
Most adverse out-of-plane bending capacity factor	f_{by}/F_{by}	=	0.06		PASS	
Sofialing dapasity factor						
COMBINED ACTIONS						
4.1.1 Combined compression as	nd bending					4.1.1(2)
	_					
	F _a	=	19.11	MPa		3.4.8
	F _{ao}		194.35	MPa		3.4.10
	F _{bx}		194.35 194.35	MPa MPa		3.4.17
	F_{by}	=	194.33	IVIFA		3.4.17
	f _a /F _a	=	0.227			
Check:	$f_a/F_a + f_{bx}/$	F _{bx} + f _{by}	y/F _{by} ≤ 1.0			4.1.1 (3)
i.e.	0.28	≤	1.0		PASS	(3)
SHEAR 3.4.24 Shear in webs (Major						
Axis)						4.1.1(2)
Clear web height	h	=	74	mm		
	t	=	3	mm		
Slenderness	h/t	=	24.66666 7			
Limit 1	S ₁	=	29.01			
ı					I	

50 | P a g e

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085

Email: hited@bigpond.net.au

Tel: 02 9975 3899 Fax: 02 99751943

Limit 2	S_2	=	59.31	
Factored limit state stress	φF _L	=	131.10	MPa
Stress From Shear force	f_{sx}	=	V/A_w	
			1.51	MPa
3.4.25 Shear in webs (Minor Axis)				
Clear web height	b	=	74	mm
	t	=	3	mm
Slenderness	b/t	=	24.66666 7	
Factored limit state stress	фҒ∟	=	131.10	MPa
Stress From Shear force	\mathbf{f}_{sy}	=	V/A_w	
			0.03	MPa
Stress From Gridal Toroc	·sy	-		MPa

3 Wanniti Road BELROSE NSW 2085 Tel: 02 9975 3899 Fax: 02 99751943

Email: https://cseds.com.au/
Web: https://cseds.com.au/

7 Summary

7.1 Conclusions

- a. The 15m x 20m Event Deluxe 2 Tent structure as specified has been analyzed with a conclusion that it has the capacity to withstand wind speeds up to and including **91.8km/hr**.
- b. For forecast winds in excess of **91.8km/hr** all fabric shall be removed from the frames, and the structure should be completely dismantled.
- c. Wall Bracing is required at each end bay and every third bay in between to resist against lateral movement due to wind direction2. (refer to detail drawings).
- d. For uplift due to 91.8km/hr, 10 kN (1T) holding down weight/per leg for upright support section is required.
- e. For uplift due to 91.8km/hr, 8 kN (0.8T) hold down weight/ per leg of gable section is required.
- f. The bearing pressure of soil should be clarified and checked by an engineer prior to any construction for considering foundation and base plate.
- g. Roof Bracing Cables are required to have the minimum tensile strength equal to 15kN SWL.
- h. It is important to use 60x60x2.5 profile for all intermediate purlins with spacing not exceeding 1600mm. This means 8 intermediate purlins are required per bay for the 15m tent structure.
- i. It is important to use cable roof bracing for all spans.

Yours faithfully,

E.A. Bennett M.I.E. Aust. NPER 198230

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085 Tel: 02 9975 3899 Fax: 02 99751943

Web: https://cseds.com.au/

Email: <u>hited@bigpond.net.au</u>

8 Appendix A – Base Anchorage Requirements

15m x 20m Event Deluxe 2 Tent Structure:

Tent Span	Sile	Required	
	Type	Weight Per Leg	
	Α	1000kg	
	В	1000kg	
15 m	С	1000kg	
	D	1000kg	
	E	1000kg	

Definition of Soil Types:

Type A: Loose sand such as dunal sand. Uncompacted site filling may also be included in this soil type.

Type B: Medium to stiff clays or silty clays

Type C: Moderately compact sand or gravel eg. of alluvial origin.

Type D: Compact sand and gravel eg. Weathered sandstone or compacted quarry rubble hardstand

Type E: Concrete slab on ground. Number of dyna bolts and slab thickness to be designed.

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085 Tel: 02 9975 3899 Fax: 02 99751943

Web: https://cseds.com.au/

Email: hited@bigpond.net.au

53 | P a g e

9 Appendix B – Hold Down Method Details

10 Appendix A - Reduction in wind speed

According to **ABCB Temporary Structures Standard 2015**, **Part 3 Section 3.3(C) (ii) (B)**, Wind Actions can be determined by using a comparative method such as a "special study" which is in accordance with AS/NZS 1170.0. In this regard, the attached article is used for the determination of wind loads on the temporary structure.

Design wind speed for Temporary Structures

In accordance with BCA:

Design wind speed:

a) Importance Level 2:

Region	Probability of	Regional wind speed (in m/s) for a reference period of					
	exceedance	1 year	6 months	1 Month	1 Week		
A	1:100	41	39	34	30		
	1:500	45	43	39	34		
	1:1000	46	45	41	37		

Importance Level 3:

Region	Probability of	Regional wind speed (in m/s) for a reference period of				
	exceedance	1 year	6 months	1 Month	1 Week	
A	1:100	41	39	34	30	
	1:500	45	43	39	34	
	1:1000	46	45	41	37	

Reduction factor for temporary Structures:

Wind region	Reduction factor on regional wind speed for structures of				
	6-month duration	1 month duration	1 week duration		
A	0.95	0.85	0.75		

Three Months Temporary Structure with importance level 2:

V= 40.6*0.89 = 36.13 m/s equivalent to 130.08 Km/hr

Three Months Temporary Structure with importance level 3:

V= 42.6*0.89 = 37.91 m/s equivalent to 136.49 Km/hr

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085 Tel: 02 9975 3899 Fax: 02 99751943

Email: hited@bigpond.net.au

Wind Loads for Temporary Structures

Chi-hsiang Wang* and Lam Pham*

* CSIRO Ecosystem Sciences, PO Box 56, Highett, Victoria, 3190, Australia (E-mail: Chi-hsiang.Wang@csiro.au; Lam.Pham@csiro.au)

ABSTRACT

This paper argues that to be consistent with the Building Code of Australia (BCA), temporary structures should be defined as structures with definite dates for construction and deconstruction within a period of one year. The design wind speeds for these structures can be determined by keeping the *design-life* probabilities of exceedance the same as the *annual* probabilities of exceedance specified in the BCA. The design wind speeds can then be estimated using records of daily gust speeds or by probabilistic analysis using the model for regional wind speed specified in AS/NZS1170.2. An alternative to the above approach is to keep the *design-life* probabilities of exceedance of temporary structures the same as that in the BCA together with the assumption that the design life of BCA structures is 50 years. This approach yields results which may appear to be reasonable for structures with design life more than 10 years. For structures with less than one year duration the corresponding design wind speeds will have a much higher probabilities of exceedance and the resulting structures will have much lower reliability, if applied without exceptional clauses. However, alterations introduced by exceptional clauses undermine the rationale of such alternative.

KEYWORDS

Wind loads; Temporary structures; Design life; Building code.

INTRODUCTION

The Building Code of Australia (BCA) (Australian Building Codes Board, 2010), adopted by all States and Territories, covers new buildings and alterations/additions to existing buildings. The BCA does not elaborate on the issues of temporary structures and leaves it to the State and Territory authorities to decide what to do in specific circumstances. There is a need to provide a rationale for the derivation of design wind speeds for temporary structures that is consistent with the regulatory principles of the BCA.

The BCA does not define 'design life' or state how long structures should last for; however, it specifies 'design events' for which structures must be designed on the basis of annual probabilities of exceedance of these events. These annual probabilities depend on the importance level of structures. The term 'design life' is used to denote the total periods of use of a structure for its intended purpose. The design life of structures with repeated use should be the sum of all durations of anticipated use rather than the duration of one single use.

The wind action standard AS/NZS 1170.2:2011 (Standards Australia, 2011) refers in Clause 2.3 to structures with design life greater than 5 years as 'permanent' and structures with design life less than or equal to 5 years as 'temporary'. In an earlier version, AS 1170.2:1989 (Standards Australia, 1989), temporary structures, however, are considered as structures with design life less than 6 months. Appendix F of AS/NZS 1170.0:2002 (Standards Australia, 2002) contains some recommendations for design wind speeds for structures with varying design life but not referenced by the BCA, presumably because of the awareness that these recommendations are not consistent with the BCA approach. In this paper, 'temporary structures' are defined as structures with a total

Web: https://cseds.com.au/

Ju₁Page

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085 Tel: 02 9975 3899 Fax: 02 99751943

Email: hited@bigpond.net.au

period of use of less than one year. Temporary structures embrace a number of types of structures such as formwork (6 months but with repeated use), circus tents (1 month but with repeated use), and special occasion entertainment shelter (1 day). Similar to permanent structures, the consequence of failure of temporary structures is addressed by designation of importance levels as specified by the BCA. A circus tent or a special occasion entertainment shelter are therefore should be classified as of Importance Level 3.

METHODS

The Australian design standard for wind action AS/NZS 1170.2:2011 (Standards Australia, 2011) specifies the regional design wind speeds in terms of the annual probabilities of exceedance, i.e. the probability of exceedance for a reference period of one year. If the design life is less than one year, as with the temporary structures defined herein, then it could be argued that the use of one year reference period is excessive and a reference period equal to the design life may be more appropriate. One way to do this is to examine the maximum weekly or monthly gust speed records and carry out the appropriate statistical analysis. This paper, however, proposes an alternative probabilistic method which gives the same results as that derived from the gust records, as shown later in this section.

The equations for regional wind speed specified in the design standard are expressed in the following form,

$$V_R = a - bR^{-k} \tag{1}$$

where V_R (m/s) is the regional wind speed with the annual probability of exceedance 1/R, and a, b, and k are the coefficients dependent on the hazard region; for example, for region A, a=67, b=41, and k=0.1.

The extreme wind events occurring in consecutive reference periods are assumed to be independent. In such cases, the annual probability of nonexceedance, P_a , can be expressed by the probability of nonexceedance for the reference period s, P_s , as follows (Ang & Tang, 2007),

$$P_{c} = P_{c}^{T}$$
(2)

where T is the number of reference periods per year; e.g. T = 12 if monthly extreme events are considered.

Substituting equation (2) into equation (1), we obtain the regional wind speed $V_{R,s}$ for a probability of exceedance of $(1/R_s)$ for the reference period s,

$$V_{R,s} = a - b \left[1 - \left(1 - \frac{1}{R_s} \right)^T \right]^k \tag{3}$$

Tel: 02 9975 3899 Fax: 02 99751943

Web: https://cseds.com.au/

Equation (3) is used to compute the regional wind speed for annual, 6-monthly, monthly, and weekly wind hazard. Table 1 shows the wind speed values for probabilities of exceedance of 1:100, 1:500, and 1:1000 for the reference period of weekly, monthly, 6 monthly, and yearly, for the four hazard regions. To see the relative magnitude between the sub-annual wind speed and the annual wind speed, the wind speed ratios, defined as $V_{R,S}/V_R$, for the probability of exceedance of 1:100,1:500, and 1:1000 are given also in Table 2.

Table 1. Regional wind speeds for reference periods not exceeding one year

Region	Probability of	Regional wind speed (in m/s) for a reference period of					
	exceedance	1 year	6 months	1 Month	1 Week		
A	1:100	41	39	34	30		
	1:500	45	43	39	34		
	1:1000	46	45	41	37		
В	1:100	48	44	32	22		
	1:500	57	53	43	33		
	1:1000	60	57	47	38		
C	1:100	56	52	38	27		
	1:500	66	62	50	39		
	1:1000	70	66	55	45		
D	1:100	66	60	42	26		
	1:500	80	74	58	43		
	1:1000	85	80	65	51		

Table 2. Ratios of sub-annual wind speed to annual wind speed

Region	Probability	6-monthly/Annual	Monthly/Annual	Weekly/Annual
	of			
	exceedance			
A	1:100	0.96	0.83	0.72
	1:500	0.96	0.86	0.77
	1:1000	0.97	0.88	0.79
В	1:100	0.91	0.67	0.46
	1:500	0.94	0.75	0.58
	1:1000	0.94	0.78	0.63
С	1:100	0.92	0.68	0.48
	1:500	0.94	0.76	0.60
	1:1000	0.95	0.79	0.64
D	1:100	0.9	0.63	0.39
	1:500	0.93	0.73	0.54
	1:1000	0.94	0.76	0.6

Table 3. Comparison of wind speed derived from the proposed method and that derived from recorded data. Figures in () are from the proposed method

Region	Reference period	Regional wind speed (in m/s) for a reference period of					
	exceed. prob.	6 months	1 Month	1 Week			
A	1:100	39 (39)	34 (34)	31 (30)			
	1:500	43 (43)	38 (39)	34 (34)			
	1:1000	45 (45)	39 (41)	36 (37)			

Web: https://cseds.com.au/

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085 Tel: 02 9975 3899 Fax: 02 99751943

Email: hited@bigpond.net.au

The probability distributions implied in AS/NZS 1170.2:2011 are only approximate fits to historical data. Thus for practical design purposes, the lines in Figure 1 may be regarded as parallel. In this case, the reduction factors given in Table 2 can be simplified to a single table, as shown in Table 3, by averaging the ratios across the three probabilities of exceedance.

Alternatively, records of daily gust speeds can be used to determine the weekly, monthly and sixmonthly wind speeds. This was carried out as an example using the daily maximum gust data recorded at Melbourne Airport, as shown in Figure 1. Comparison of the wind speeds derived from the proposed method and that derived from the recorded data shows that both methods give the same results (Table 3).

Figure 1. Sub-annual gust hazard derived from daily maximum gust data (Melbourne Airport)

RESULTS AND DISCUSSION

There are good reasons why the BCA does not define design life and the reliability assessment is based on a reference period of one year rather than design life. One of the reasons is that it is practically impossible to impose any regulatory action at the end of the design life for structures with design life of more than one year.

Even if design life is defined, a criterion such as keeping the design-life probability of exceedance constant produces very low ultimate design wind speeds for temporary structures of one week or one month as shown in Table 4.

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085 Tel: 02 9975 3899 Fax: 02 99751943

Email: https://cseds.com.au/
Web: https://cseds.com.au/

Table 4. Comparison of wind speed derived from the proposed method and that derived by keeping the design-life probability of exceedance constant. Figures in () are from the proposed method

Region	Design-life	Regional wind speed (in m/s) for a design life of				
	exceed.	50 years	1 year	6 months	1 Month	1 Week
	prob.		,			
A	1:2.5	41 (41)	31 (41)	29 (39)	25 (34)	21 (30)
	1:10	45 (45)	34 (45)	33 (43)	29 (39)	25 (34)
	1:20	46 (46)	37 (46)	35 (45)	30 (41)	27 (37)

The definition of temporary structures as structures with intended period of use less than a year means that items such as construction equipment, construction accommodation, and communication towers may no longer be considered as temporary. This does not mean that they cannot be designed for a lower design load (and hence a lower level of annual reliability). It only means that if consistency with the BCA is deemed necessary, the rationale for adopting a lower reliability level (or load) should be given.

Other criteria such as keeping the design-life probability of exceedance of temporary structures the same as that of permanent structures may be applied for design load reduction. However, if applied without exceptional clauses, such criteria may produce low design wind speed for some short-term structures, as shown in Table 4, while alterations introduced by exceptional clauses undermine the rationale of the criteria.

RECOMMENDATION

For temporary structures that are constructed and deconstructed within a year, the regional design wind speed may be reduced by the factor given in Table 5 as appropriate for the level of importance of the structure and its location. This table represents the average values of Table 2, rounded off to the nearest 0.05. Interpolation is permitted for other reference periods not less than one week.

Table 5. Recommended reduction factors on regional wind speeds for temporary structures

Wind region	Reduction factor on regional wind speed for structures of					
	6-month duration	1 month duration	1 week duration			
A	0.95	0.85	0.75			
В	0.95	0.75	0.55			
С	0.95	0.75	0.55			
D	0.90	0.70	0.50			

For temporary structures in cyclonic regions but construct and deconstruct in non-cyclonic seasons, it might be more appropriate to use the design wind speeds and reduction factors for non-cyclonic regions. This recommendation is at variance with those given in AS/NZS1170.0:2002 –Appendix F and AS/NZS 1170.2:2011 but in fairly broad agreement with those in AS1170.2:1989 which gave a reduction factor of about 0.8 on wind speed for all structures of 6 months or less.

CONCLUSIONS

A probabilistic method consistent with the BCA specification to determine the regional gust speed for design of temporary structures has been proposed. The resulting recommendation is in broad agreement with that given in AS1170.2:1989.

60 | P a g e

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085

Email: hited@bigpond.net.au

Tel: 02 9975 3899 Fax: 02 99751943 **Web:** https://cseds.com.au/

REFERENCES

Ang, A. H-S. & Tang, W. H. (2007). Probability Concepts in Engineering: Emphasis on Applications to Civil and Environmental Engineering, 2 ed., John Wiley & Sons, Hoboken, New Jersey.

Australian Building Codes Board (2010). *The Building Code of Australia 2010*, Volume One, Australian Building Codes Board, Canberra, Australia.

Standards Australia (1989). SAA Loading Code, AS 1170.2:1989—Wind loads, Sydney, Australia.

Standards Australia (2002). Structural design actions, Part 0: General principles, AS/NZS 1170.0:2002, Sydney, Australia.

Standards Australia (2011). Structural design actions, Part 2: Wind actions, AS/NZS 1170.2:2011, Sydney, Australia.

ABN: 62 051 307 852

3 Wanniti Road BELROSE NSW 2085 Tel: 02 9975 3899 Fax: 02 99751943

Email: https://cseds.com.au/
Web: https://cseds.com.au/