

Prime Consulting Engineers Pty. Ltd.

Design Report:

12m Dome Structure (enclosed)

For

Ref: R-22-211-1

Date: 12/05/2022

Amendment: A

Prepared by: KZ

Checked by: SD

CONTENTS

1	Intro	duction and Scope:	4
	1.1	Project Description	4
	1.2	References	4
	1.3	Notation	4
2	Desig	n Overview	5
	2.1	Geometry Data	5
	2.2	Assumptions & Limitations	6
	2.3	Exclusions	6
	2.4	Design Parameters and Inputs	6
	2.4.1	Load Cases	6 7
	2.4.2	Load Combinations	
3	Speci	fications	7
	3.1	Material Properties	7
	3.2	Member Sizes & Section Properties	7
4	Desig	n Loads	7
5	Wind	Analysis	8
	5.1	Ultimate	8
	5.1.1	Summary Forces	11
6	Snow	r Load	12
	6.1	Sub-Alpine	12
7	Load	Diagrams	13
	7.1	Wind Load	13
	7.1.1	Wind Load Ultimate (W _U)	13
	7.1.2	Wind Load Internal Pressure (W _{I,pressure})	14
	7.1.3	Wind Load Internal Suction (W _{I,suction})	15
	7.2	Snow Load	16
	7.2.1	Snow Load (Case1)	16
	7.2.2	Snow Load (Case2)	17
8	Analy		18
		3D model	18
	8.2	Results	19
	8.2.1		19
	8.2.2		20
	8.2.3	5 ,	21
	8.2.4	0	22
	8.2.5		23
	8.2.6		24
	8.2.7		25
9		Member Design	26
	9.1	32x2 CHS	27

9	.2 30x2 SHS	29
10	Pegging Design	31
11	Summary and Recommendations	33
12	Appendix A – Detail Drawings	34

1 Introduction and Scope:

The report and certification are the sole property of Prime Consulting Engineers Pty. Ltd.

Prime Consulting Engineers have been engaged by Extreme Marquees Pty. Ltd. to carry out a structural analysis of 12m dome structure for wind loads region A (non-cyclonic) and snow loads for sub-alpine regions. It should be noted that the outcome of our analysis is limited to the selected items as outlined in this report.

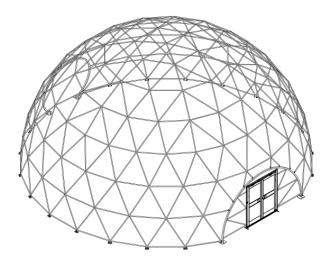
This report shall be read in conjunction with the documents listed in the references (Section 1.2)

1.1 Project Description

The report examines the effect of 3s gust wind of **(refer to summary)** and snow loads of subalpine region positioned for the worst effect on the 12m dome structure. The result of this report is also applicable to the smaller dome structure with identical member sizes. The relevant Australian Standards AS1170.0:2002 General principles, AS1170.1:2002 Permanent, imposed and other actions, AS1170.2:2021 Wind actions and AS1170.3 Snow actions are used. The design check is in accordance with AS4100:1998 steel structures.

1.2 References

- The documents referred to in this report are as follows:
 - Report of results produced through SAP2000 V24 software & excel spreadsheets.
 - Detail drawing provided by manufacturer. Refer to appendix 'A'.
- The basic standards used in this report are as follows:
 - AS 1170.0:2002 Structural Design Actions (Part 0: General principles)
 - AS 1170.1:2002 Structural Design Actions (Part 1: Permanent, imposed, and other actions)
 - AS 1170.2:2021 Structural Design Actions (Part 2: Wind Actions)
 - AS 1170.3:2003 Snow and ice actions.
 - AS4100:1998 Steel Structures.
- Section Properties of Steel (Q235) Section provided by the client.
- The program(s) used for this analysis are as follows:
 - o SAP2000 V24
 - o Microsoft Excel


1.3 Notation

AS/NZS Australian Standard/New Zealand Standar	dard
--	------

FEM/FEA Finite Element Method/Finite Element Analysis

- SLS Serviceability Limit State
- ULS Ultimate Limit State
- 2 Design Overview
- 2.1 Geometry Data

DOME RANGE

4m / 5m / 6m / 7m / 8m / 9m / 10m / 11m / 12m

EVENT TENT

ITEM	SPECIFICAT	ION							
Size	4m	5m	6m	7 m	8m	9m	10m	11m	12m
Ceiling Height	2.4m	2.5m	3m	3.5m	4m	4.5m	5m	5.5m	6m
Door Size	1200mm W	/ x 1800mm H	1	1500mm \	V × 2100mm	Н	1500mm \	V x 2400mm	Н
Dome Style	Lapela								
Floor Space	12.5 sq.m	17.8 sq.m	28 sq.m	38 sq.m	50 sq.m	63 sq.m	78 sq.m	95 sq.m	113 sq.m
Stand up Capacity	15	24	34	46	60	76	94	114	136
Sit down Capacity	10	16	23	31	40	51	63	76	90
Frame Material	Steel							10	

Isometric view of structures

2.2 Assumptions & Limitations

- The erected structure is for temporary use only.
- For forecast winds in excess of (refer to summary) the dome structure should be completely dismantled.
- The structure may only be used in regions with wind and snow classifications no greater than the limits specified in cl. 5 & 6 of this report.
- Parameters used for wind & snow calculations:
 - TC 2
 - Wind Region A
 - Sub-alpine region (Orange, NSW)
- Topographical factors such as erecting the structure on the crest of a hill or on the top of an escarpment may result in a higher wind speed classification. Thus, special considerations should be taken to the topographical location of the installation site.
- Shall the site conditions, wind or snow parameters exceed prescribed design actions (refer to cl.7), Prime Consulting Engineers Pty. Ltd. should be informed to determine appropriate wind/snow classifications and amend computations accordingly.
- It is assumed that the structure is fully enclosed with equally permeable side walls to calculate Wind Internal Forces.

2.3 Exclusions

- Design of fabric
- Wind actions due to tropical or severe tropical cyclonic areas.
- Snow actions due to snow loads other than Orange, NSW.
- Super imposed loads such as live load.

2.4 Design Parameters and Inputs

2.4.1 Load Cases

- 1. G Permanent actions (Dead load)
- 3. Wu Ultimate wind action (ULS)
- 4. Ws Serviceability wind action (SLS)
- 5. S Snow action (SLS)

2.4.2 Load Combinations

Strength (ULS):

• •		
5.	1.2G+S	Permanent and snow actions
4.	1.2G+W _u	Permanent and wind actions
3.	0.9G+W _u	Permanent and wind actions
1.	1.35G	Permanent action only

Serviceability (SLS):

2. G+Ws Wind service actions

3 Specifications

3.1 Material Properties

Material Pr	operties 03	a - Steel Da	ita					
Material	Fy	Fu	EffFy	EffFu	SHard	SMax	SRup	FinalSlope
Text	KN/m2	KN/m2	KN/m2	KN/m2	Unitless	Unitless	Unitless	Unitless
Q235	235000	390000	260000	430000	0.015	0.11	0.17	-0.1

3.2 Member Sizes & Section Properties

Frame Section	Properti	ies 01 - 0	General									
SectionName	t3	t2	tf	tw	Area	TorsConst	133	122	S33	S22	Z33	Z22
Text	mm	mm	mm	mm	mm2	mm4	mm4	mm4	mm3	mm3	mm3	mm3
32x2 CHS	32			2	188.5	42600	21300	21300	1331.3	1331.3	10.63	10.63
30x2 SHS	30	30	2	2	224	43904	29418.67	29418.67	1961.24	1961.24	2356	2356

4 Design Loads

Self weight	G	self weight
3s 120km/hr gust	Wu	0.751 C _{fig} (kPa)
Sub-alpine snow load	Ws	0.13 - 0.68 (kPa)

5 Wind Analysis

5.1 Ultimate

or	Project:	12m Dome	Structure		
PLE	Jon no.	22-211-1		Designer:	KΖ
PRIME CONSULTING ENGINEERS PTY. LTD	Date:	4/05/2022		Amendment:	A-12/05/2022
Name	Symbol	Value	Unit	Notes	Ref.
		Ge	neral		
Importance level		3			Table 3.1 - Table 3.2 (AS1170.0)
Annual probability of exceedance		Temporary			Table 3.3
Regional gust wind speed		140.00	Km/hr		
Regional gust wind speed	VR	38.89	m/s		
Wind Direction Multipliers	Md	1			Table 3.2 (AS1170.2)
Terrain Category	тс	2			(//0////0.2)
Terrain Category Multiplier	Mz,Cat	0.91			
Shield Multiplier	Ms	1			4.3 (AS1170.2)
Topographic Multiplier	Mt	1			4.4 (AS1170.2)
Site Wind Speed	Vsite,β	35.39	m/s	Vsite, B=VR*Md*Mz, cat*MS, Mt	
Pitch	α	0	Deg		
Pitch	α	0.000	rad		
Width	В	12	m		
Width Span	Sw	-	m		
Length	D	12	m		
Height	Z	3	m		
Bay Span		-	m		
	h/d	0.25			
	h/b	0.25			
		Wind	Pressure		
hoair	ρ	1.2	Kg/m ³		

dynamic response factor	Cdyn	1			
Wind Pressure	ho*Cfig	0.751	Kg/m²	ρ =0.5 ρ air*(V _{des,β}) ² *C _{fig} *C _{dyn}	2.4 (AS1170.2)
	WIND DIR	ECTION 1	(Perpendi	icular to Length)	
			al Pressu		
Opening Assumption					
	Without	Dominant (Opening		
Internal Pressure Coefficient (Without Dominant) MIN		-0.3			
Internal Pressure Coefficient (Without Dominant)		0.2			
Internal Pressure Coefficient (With Dominant) MIN					
Internal Pressure Coefficient (With Dominant) MAX					
N Combination Easter	K - :	1		Cpi= N*Cpe	
Combination Factor Internal Pressure Coefficient	Kc,i	1			
MIN	C _{p,i}	-0.30			
Internal Pressure Coefficient MAX	$C_{\text{p},i}$	0.20			
		Fxtern	al Pressu	rp	
		Extern	4111054		
1. Windward Wall					
External Pressure Coefficient	C _{P,e}	0.7			
Area Reduction Factor	Ka	1			Table 5.4
combination factor applied to internal pressures	K _{C,e}	0.8			
local pressure factor	Kı	1			
porous cladding reduction factor	Kp	1			
aerodynamic shape factor	C _{fig,e}	0.56			
Wind Wall Pressure	Р	0.42	kPa		
2. Leeward Wall	-				
External Pressure Coefficient	C _{P,e}	-0.5			-
Area Reduction Factor	Ka	1			Table 5.4
combination factor applied to internal pressures	K _{C,e}	0.8			
local pressure factor	Kı	1			
porous cladding reduction factor	Kp	1			
aerodynamic shape factor	$C_{\text{fig,e}}$	-0.4			

_eeward Wall Pressure	Р	-0.30	kPa		
3. Side Wall					
Area Reduction Factor	Ka	1			Table 5.4
combination factor applied to internal pressures	K _{C,e}	0.8			
local pressure factor	Kı	1			
porous cladding reduction factor	Kp	1			
External Pressure Coefficient	$C_{P,e}$	-0.65		0 to 1h	
External Pressure Coefficient	$C_{P,e}$	-0.5		1h to 2h	
External Pressure Coefficient	C _{P,e}	-0.3		2h to 3h	
External Pressure Coefficient	$C_{P,e}$	-0.2		>3h	
aerodynamic shape factor	C _{fig,e}	-0.52		0 to 1h	
aerodynamic shape factor	C _{fig,e}	-0.4		1h to 2h	
aerodynamic shape factor	C _{fig,e}	-0.24		2h to 3h	
aerodynamic shape factor	C _{fig,e}	-0.16		>3h	
Side Wall Pressure	Р	-0.39	kPa	0 to 1h	
Side Wall Pressure	Р	-0.30	kPa	1h to 2h	
Side Wall Pressure	Р	-0.18	kPa	2h to 3h	
Side Wall Pressure	Р	-0.12	kPa	>3h	
4. Roof					
r (rise)	r	6	m		
h/r	h/r	0.50			
Breadth Effect		1.00		(b/d)^0.25>1	
Rise-to-span ratio	r/d	0.50			
4.1 Roof Windward Quarter					
U	U	3	m		Table C3
Area Reduction Factor	Ka	1			
combination factor applied to internal pressures	K _{C,e}	0.8			
local pressure factor	Kı	1			
porous cladding reduction factor	Kp	1			
External Pressure Coefficient	C _{P,e}	0.3			
Factored External Pressure Coefficient	C _{P,e}	0.30			
aerodynamic shape factor	C _{fig,e}	0.24			
Pressure	Ρ	0.18	kPa		
4.2 Roof Centre Half					
T	т	6	m		Table C3

Email: info@primeengineers.com.au Web: www.primeengineers.com.au

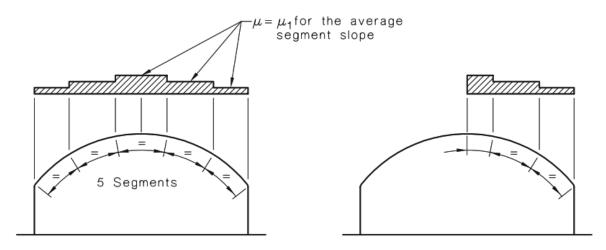
Area Reduction Factor	Ka	1	
combination factor applied to internal pressures	K _{C,e}	0.8	
local pressure factor	K	1	
porous cladding reduction factor	Kp	1	
External Pressure Coefficient	C _{P,e}	-0.65	
Factored External Pressure Coefficient	C _{P,e}	-0.65	
aerodynamic shape factor	$C_{\text{fig,e}}$	-0.52	
Pressure	Р	-0.39	kPa
4.2 Roof Centre Half			
D	D	3	m
Area Reduction Factor	Ka	1	
combination factor applied to internal pressures	K _{C,e}	0.8	
local pressure factor	Kı	1	
porous cladding reduction factor	Kp	1	
External Pressure Coefficient	C _{P,e}	-0.2	
Factored External Pressure Coefficient	$C_{P,e}$	-0.20	
aerodynamic shape factor	C _{fig,e}	-0.16	
Pressure	Ρ	-0.12	kPa

5.1.1 Summary Forces

	WIND EXTERNAL	PRESSURE (kr	Pa)	
			Wind Dire	ection
	Windward		0.42	2
	Leeward		-0.3	0
Sidewall	0m - 3m		-0.3	9
	3m - 6m		-0.3	0
	6m - 9m		-0.1	8
	> 9m		-0.1	2
Roof				
	Windward Quarter (U)	3m	0.18	
	Centre Half (T)	6m	-0.39	
	Leeward Quarter (D)	3m	-0.12	
	Wind Internal	Pressure (kPa)		
			-0.23	0.15

6 Snow Load

6.1 Sub-Alpine


S = Sg x Ce x μ i

Annual probability of exceedance: 1/20 Snow region: Orange, NSW Sg = 0.9kPa

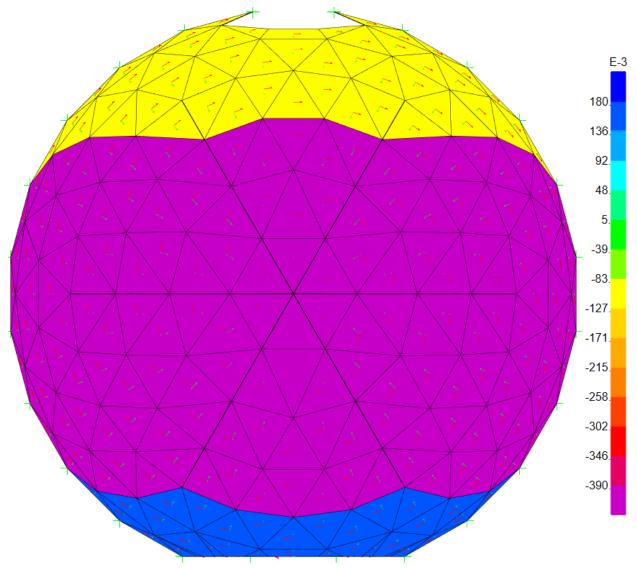
 $C_e = 1$

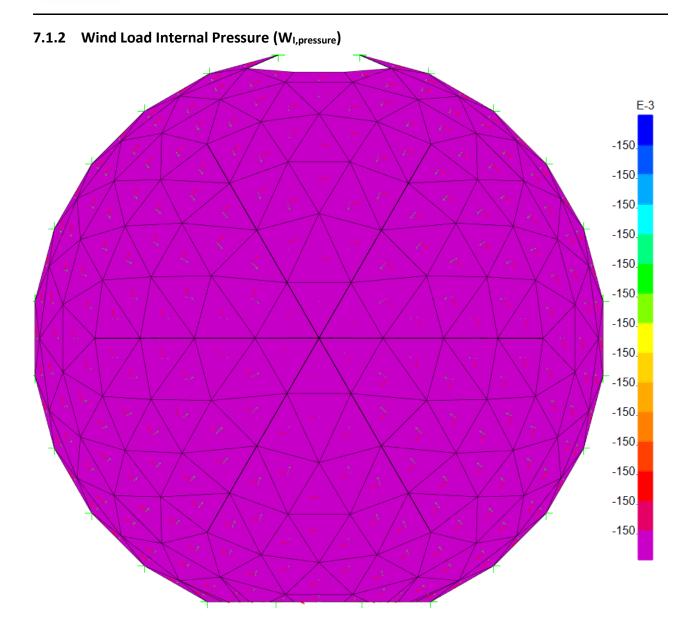
Average slope: Segment 1: $6^{\circ} \rightarrow \mu = = 0.756$ Segment 2: 24.5° $\rightarrow \mu = = 0.5$ Segment 3: 63.5° say 50° $\rightarrow \mu = = 0.14$

Snow loads: Segment 1: 0.68 kPa Segment 2: 0.45 kPa Segment 3: 0.127 kPa

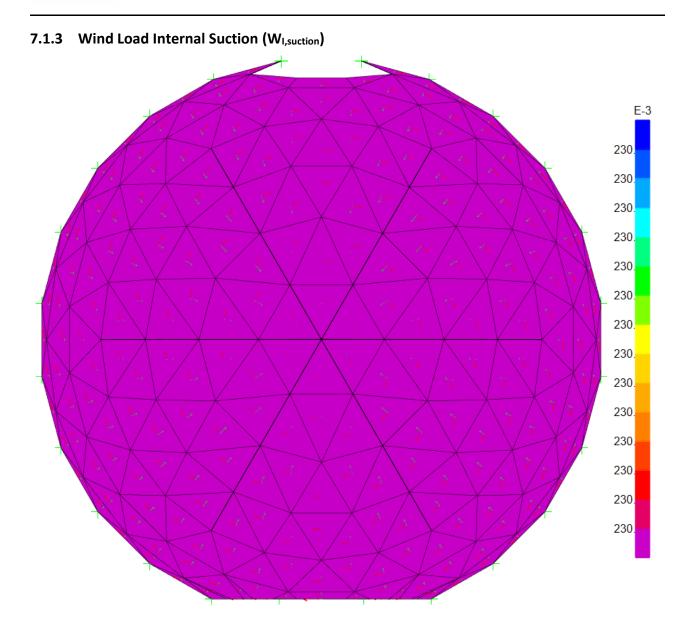
(a) Balanced

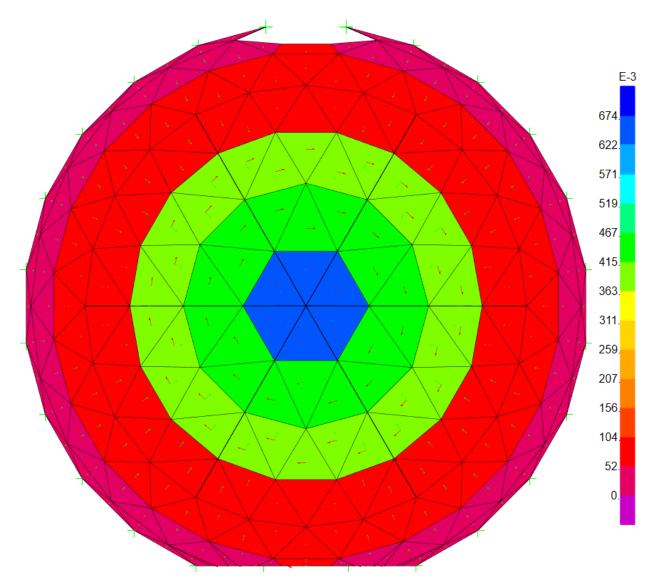
(b) Unbalanced

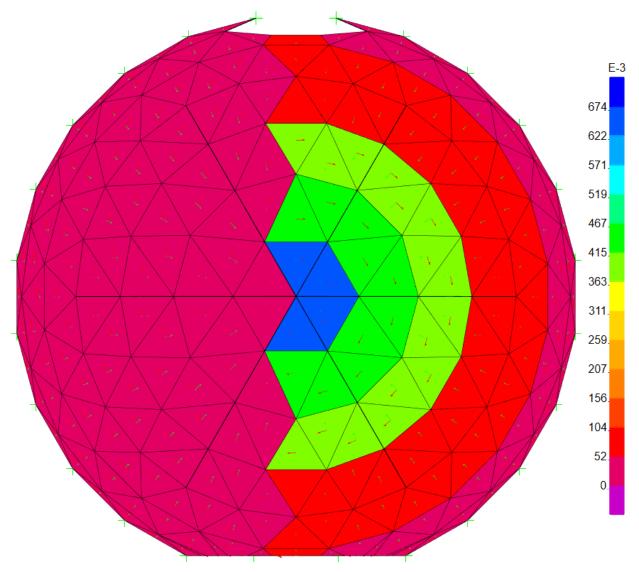



7 Load Diagrams

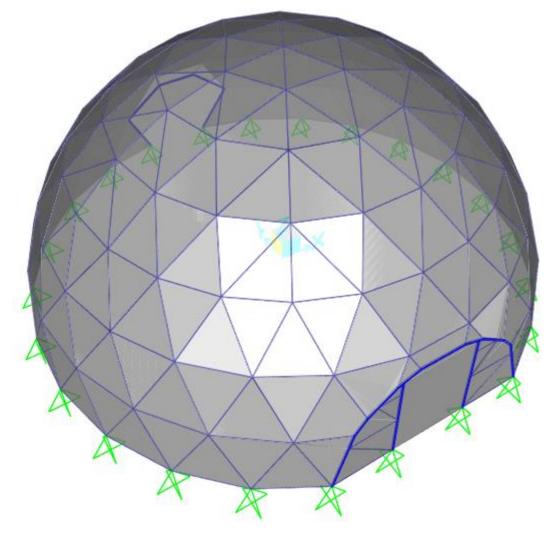
7.1 Wind Load


7.1.1 Wind Load Ultimate (W_U)

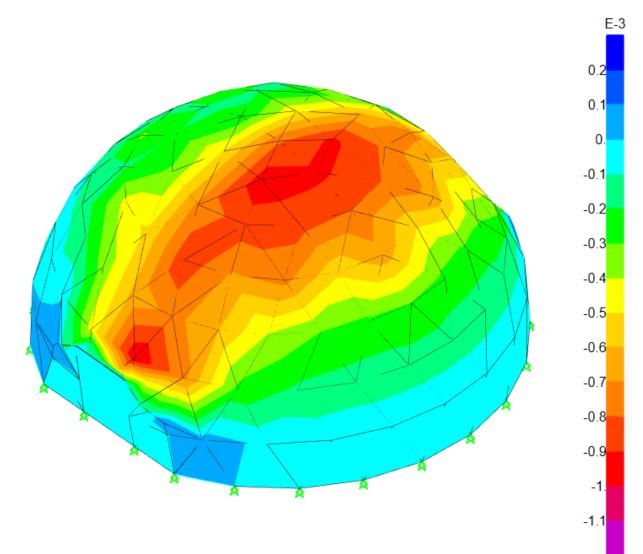



7.2 Snow Load

7.2.1 Snow Load (Case1)

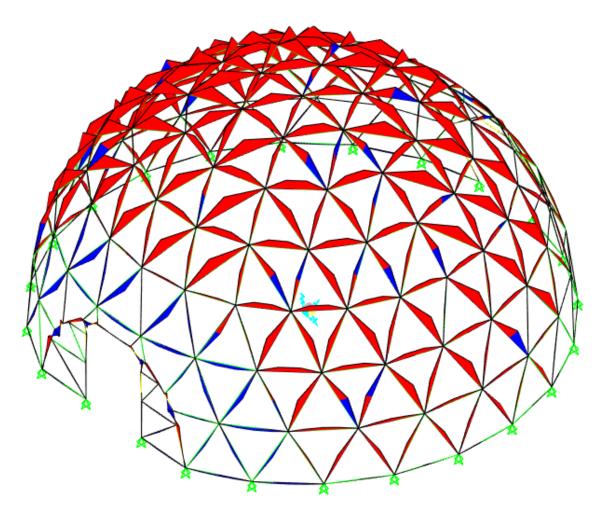

7.2.2 Snow Load (Case2)

8 Analysis

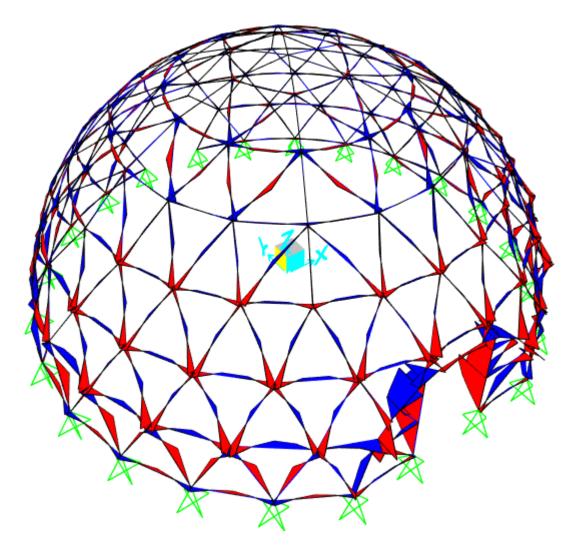

8.1 3D model


8.2 Results

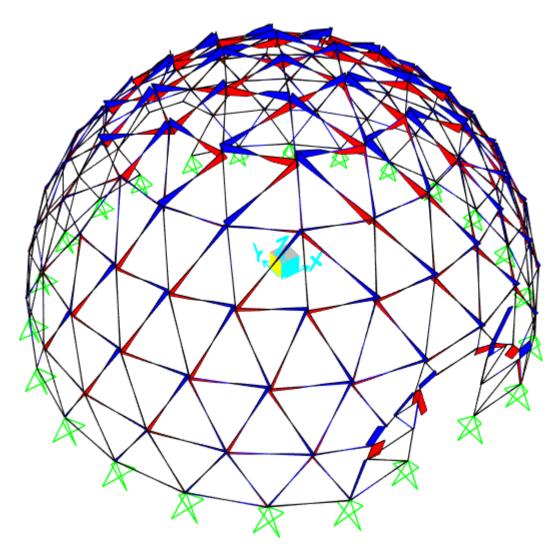
8.2.1 Maximum vertical deflection (serviceability)



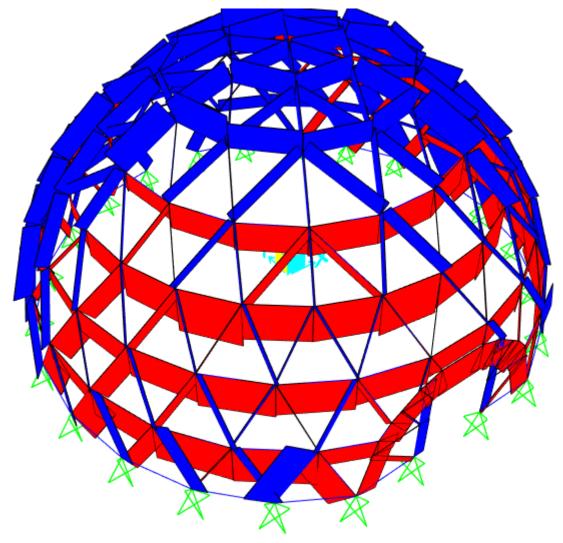
8.2.2 Maximum horizontal deflection (serviceability)



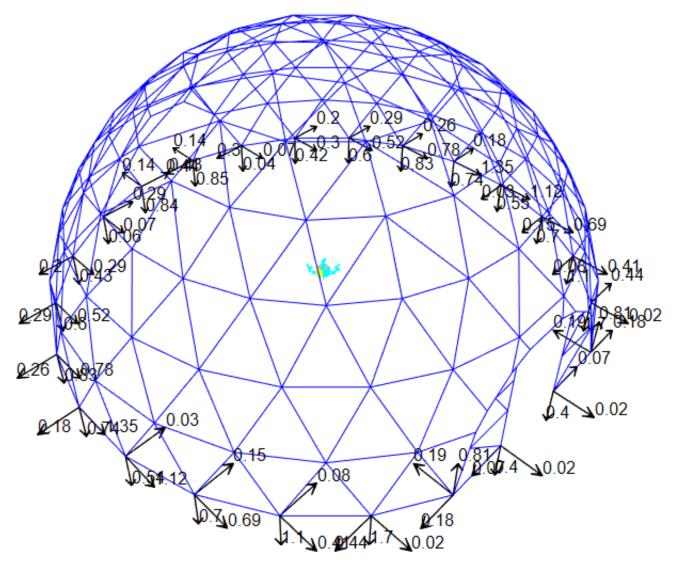
8.2.3 Maximum Bending Moment in Major Axis



8.2.4 Maximum Bending Moment in Minor Axis

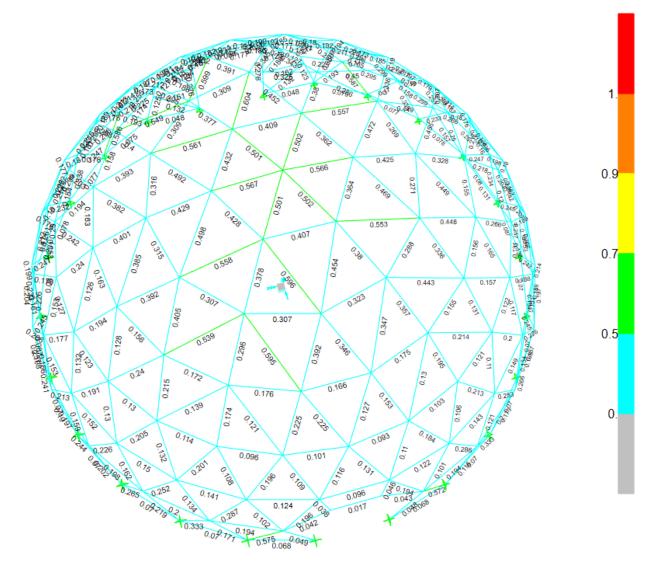


8.2.5 Maximum Shear



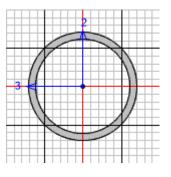
8.2.6 Maximum Axial Force

8.2.7 Maximum Reactions



 $\begin{array}{l} Max. \ F_x = 1.8 \ kN \\ Max. \ F_y = 1.75 \ kN \\ Max. \ F_{Z, \ Bearing} = 4.7 \ kN \\ Max. \ F_{Z, \ uplift} = 2.92 \ kN \end{array}$

9 Steel Member Design


All members pass for the defined design wind actions. Refer to Appendix 'B' for section capacities and factor of safeties.

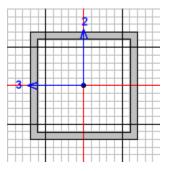
All members Pass

9.1 32x2 CHS

AS 4100-1998 STEEL SECTION CHECK (Summary for Combo and Station) Units : KN, m, C Frame : 363 X Mid: 1.001 Combo: COMB8 Design Type: Beam Length: 1.335 Y Mid: 0.578 Shape: 32x2 CHS Frame Type: Braced Frame Loc : 0.445 Z Mid: 5.85 Class: Compact Princpl Rot: 0. degrees PhiB=0.9 PhiC=0.9 PhiTY=0.9 PhiTF=0.9 PhiS=0.9 A=1.885E-04 I33=2.130E-08 r33=0.011 Z33=1.331E-06 Av3=9.453E-05 J=4.260E-08 I22=2.130E-08 r22=0.011 Z22=1.331E-06 Av3=9.453E-05 E=210000000. Fy=235000. Ry=1.106 S33=1.803E-06 Iw=0. RLLF=1. Fu=390000. SteelType=HR S22=1.803E-06 STRESS CHECK FORCES & MOMENTS (Combo COMB8) Location N* M33* M22* V2* V3* T* 0.445 -1.85 0.066 -1.483E-04 -0.095 -4.919E-04 7.216E-05

BASIC FACTORS Buckling Mode Major Flexure Minor Flexure Major Braced Minor Braced LTB		L Factor 1. 1. 1. 1. 1.	125.598 125.598 125.598			
AXIAL FORCE & BIAX Factor Major Bending Minor Bending	L 1.	Braced ke	Sway ke 1.	Delta_b 1.081 1.	1.	Cm Betam 11. 0.285 0.788
LTB Factors	Lltb 1.	1.	Kl 1.4	1.	1.166	
Axial Factors	Steel Type HR	Kf 1.	Kt 1.	15.143		Alpha_c 0.498
	Element	Lambda_e	Lambda_ep	Lambda_ey	Lambda_ew	Compactness

Email: <u>info@primeengineers.com.au</u> Web: <u>www.primeengineers.com.au</u> Address: 21/1-7 Jordan St, Gladesville NSW 2111 Phone: (02) 8964 1818



Prime Consulting Engineers Pty. Ltd.

Bending Axial	Any Any	15.04 15.04	50.	120. 82.	1.000E+14	Compact Compact
Effective Pro	ZeMajor 1.803E-06	ZeMinor 1.803E-06	de 0.032	Aeff 1.885E-04		
Major Moment Minor Moment	M* 0.071 -1.483E-04	Ms 0.424 0.424	Mr 0.404 0.404	Mi 0.384 0.384	Nc 22.056 22.056	
Major Moment	Mo,cr 6.594	Mb 0.424	Mo 0.384	Mc 0.384	Mt 0.384	
Axial	N* -1.85	Ns 44.296	Nc 22.056	Nt 44.296	Noz 15224.641	
SHEAR CHECK						
Major Shear Minor Shear	V* Force 0.095 4.919E-04	Vv Capacity 14.352 14.352	Stress Ratio 0.007 3.427E-05	Status Check OK OK		

9.2 30x2 SHS

AS 4100-1998 STEEL SECTION CHECK Units : KN, m, C

(Summary for Combo and Station)

Frame : 14 Length: 1.4 Loc : 0.	X Mid: 2.129 Y Mid: -5.51 Z Mid: 0.668	Combo: COMB8 Shape: 30x2 SHS Class: Compact	Design Type Frame Type: Princpl Rot	
PhiB=0.9	PhiC=0.9	PhiTY=0.9	PhiTF=0.9	PhiS=0.9
A=2.240E-04 J=4.390E-08 E=210000000. RLLF=1.	I33=2.942E-08 I22=2.942E-08 Fy=235000. Fu=390000.	r33=0.011 r22=0.011 Ry=1.106 SteelType=HR	Z33=1.961E-06 Z22=1.961E-06 S33=2.356E-06 S22=2.356E-06	Av3=1.200E-04 Av2=1.200E-04 Iw=0.

STRESS CHECK I Location 0.	FORCES & MOMENTS (0 N* -5.354E-05	Combo COMB8) M33* -0.062	M22* 0.041	V2* -0.238		V3* 0.045	T* -8.282E-04
	PACITY RATIO (8.4 : 0.125 = 0.125 = M33*/(g				<	0.95	ОК

BASIC FACTORS				
Buckling Mode	K Factor	L Factor	KL/r	
Major Flexure	1.	0.749	91.452	
Minor Flexure	1.	1.	122.166	
Major Braced	1.	0.749	91.452	
Minor Braced	1.	1.	122.166	
LTB	1.4	1.	171.033	

AXIAL FORCE & BIAXI	IAL MOMENT	DESIGN (8.	4.4.1)			
Factor	L	Braced ke	Sway ke	Delta b	Delta s	Cm Betam
Major Bending	0.749	1.	1.	1.	1.	0.376 0.561
Minor Bending	1.	1.	1.	1.	1.	0.2 1.
	Lltb	Kt	Kl	Kr	Alpha_m	Alpha_s
LTB Factors	1.	1.	1.4	1.	2.5	0.996
S	Steel Type	Kf	Kt	Alpha_a	Alpha_b	Alpha_c
Axial Factors	HR	1.	1.	15.447	-1.	0.521
Slenderness	Lambda_e	Lambda_ep	Lambda_ey	Lambda_ew	Lambda_e/ey	Compactness
Major/Flange	12.604	30.	45.	180.	0.28	Compact
/Web	12.604	82.	115.	180.	0.11	Compact
Minor/Flange	12.604	82.	115.	180.	0.11	Compact

Email: <u>info@primeengineers.com.au</u> Web: <u>www.primeengineers.com.au</u>

Prime Consulting Engineers Pty. Ltd.

/Web Axial/Flange /Web	12.604 12.604 12.604	30.	45. 45. 45.	180.	0.28 0.28 0.28	Compact Compact Compact
Effective Pro	ZeMajor 2.356E-06	ZeMinor 2.356E-06	b-be 0.	d-de 0.	Aeff 2.240E-04	
Major Moment Minor Moment	M* -0.062 0.041	Ms 0.554 0.554	Mr 0.554 0.554	Mi 0.554 0.554	Nc 39.314 27.432	
Major Moment	Mo,cr 7.502	Mb 0.554	Mo 0.554	Mc 0.554	Mt 0.554	
Axial	N* -5.354E-05	Ns 52.64	Nc 27.432	Nt 52.64	Noz 13500.351	
SHEAR CHECK						
Major Shear Minor Shear	V* Force 0.238 0.045	Vv Capacity 15.228 15.228	Stress Ratio 0.016 0.003	Status Check OK OK		

10 Pegging Design

 Project:
 12m Dome

 Jon no.
 22-211-1

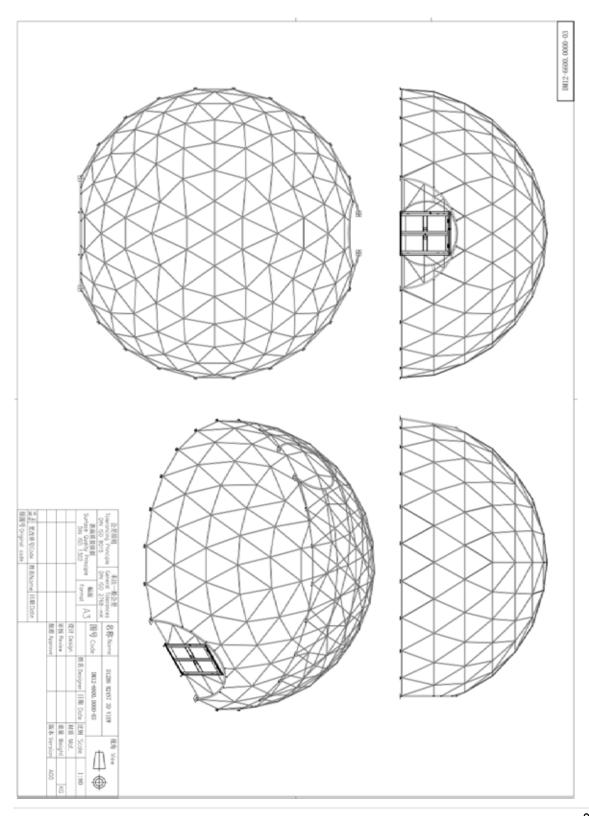
 Date:
 4/05/2022

Name	Value	Unit	Notes
<u>minimum e</u>	embedment depth f	or lateral bearing:	
Max. Horizontal Force	1.75	kN	
Max. Vertical Force	2.92	kN	
Number of Pegs	3		
Horizontal Load per peg	0.6	kN	
Vertical Load per peg	1.0	kN	
Sticking out of Ground	0	m	
S (bearing capacity)	150	kPa	To be confirmed by Geotechnical engineer
arphi	0.02	m	
н	194	mm	
Μ	0.00	kNm	
γ	19	kN/m³	To be confirmed by Geotechnical engineer
min required Embedment:	194	mm	
F.S	6.17		
	ОК		
	<u>Bending:</u>		
Profile	arphi20mm Peg		
Fy	350	mPa	
Ze	785.4	mm3	
phi	0.9		
phi Ms	0.25	kNm	
	ОК		
Clay:	Pull out Checki	<u>ng:</u>	
Clay.			
Cu	25	kPa	To be confirmed by Geotechnical engineer

Email: <u>info@primeengineers.com.au</u> Web: <u>www.primeengineers.com.au</u>

lpha (reduction factor)	1	
Provided Embedment	1200	mm
L/d	60	
Rs	0.96	
Perimeter	63	mm
Total Surface Area	0.075	m ²
min required Embedment:	0.65	т
F.S	1.85	
	ОК	
Coefficient of Friction	0.6	
Equivalent Ballast	0.29	tonne
Reference: Foundations of Struct	ures - Dunham, N	Ic Graw-Hill

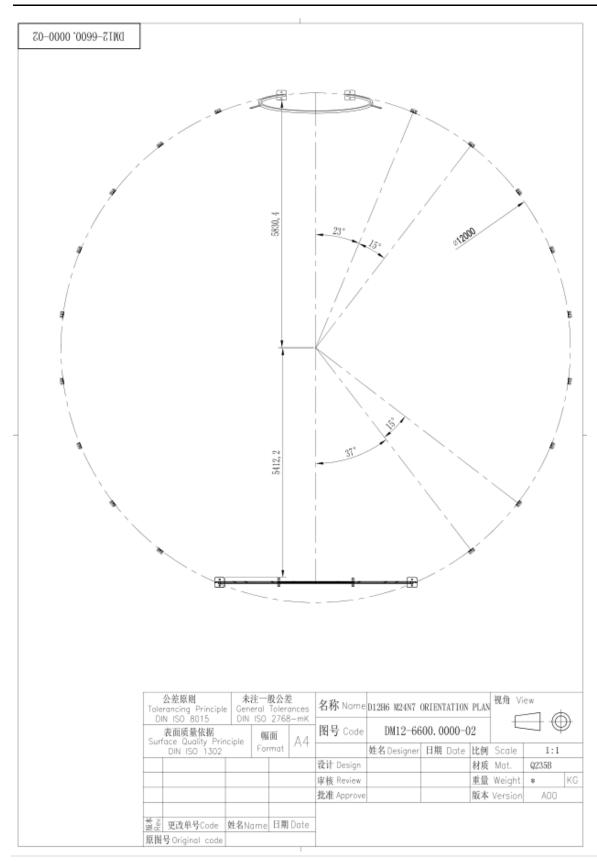
11 Summary and Recommendations


- The 12m Dome Structure as specified is capable of withstanding 3s gust wind speed up to <u>140km/hr</u> in region A, TC2.
- The dome structure is required to be dismantled for forecast winds in excess of **<u>140km/hr</u>**.
- The dome structure is designed to withstand snow loads of sub-alpine region (Orange, NSW) with maximum ground snow (Sg) 0.9kPa.
- For uplift due to 140km/hr, 3 kN (300kg) holding down weight/per support is required. (24 anchor points in total). Alternatively, pegging system described in Cl. 10 can be used.
- Design of fabric is by others.

Yours faithfully,

Prime Consulting Engineers Pty. Ltd.

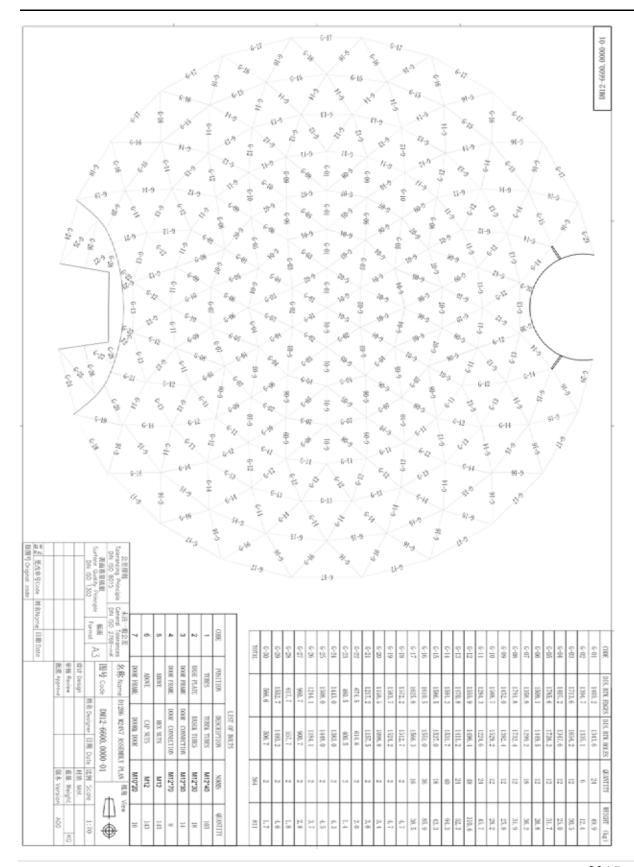
Kevin Zia, BEng, Meng, MIEAust, CPENG NER



12 Appendix A – Detail Drawings

Email: <u>info@primeengineers.com.au</u> Web: <u>www.primeengineers.com.au</u>

34 | Page



Email: <u>info@primeengineers.com.au</u> Web: <u>www.primeengineers.com.au</u>

^{35 |} Page

Email: info@primeengineers.com.au Web: www.primeengineers.com.au