

Prime Consulting Engineers Pty. Ltd.

Design Report:

8m Dome Structure (enclosed)

For

Ref: R-22-211-2

Date: 12/05/2022

Amendment: A

Prepared by: KZ

Checked by: SD

Email: info@primeengineers.com.au Address: 21/1-7 Jordan St, Gladesville NSW 2111

CONTENTS

1	Introdu	ction and Scope:	4
	1.1 Pr	oject Description	4
	1.2 Re	ferences	4
	1.3 No	otation	4
2	Design	Overview	5
	2.1 Ge	eometry Data	5
	2.2 As	sumptions & Limitations	6
	2.3 Ex	clusions	6
	2.4 De	esign Parameters and Inputs	6
	2.4.1	Load Cases	6
	2.4.2	Load Combinations	7
3	Specific	cations	7
	3.1 M	aterial Properties	7
	3.2 M	ember Sizes & Section Properties	7
4	Design	Loads	7
5	Wind A	nalysis	8
	5.1 UI	timate	8
		mmary Forces	11
6	Snow L	oad	12
	6.1 Su	b-Alpine	12
7	Load D	agrams	13
	7.1 W	ind Load	13
	7.1.1	· -/	13
	7.1.2	Wind Load Internal Pressure (W _{I,pressure})	14
	7.1.3	Wind Load Internal Suction (W _{I,suction})	15
	7.2 Sn	ow Load	16
	7.2.1	Snow Load (Case1)	16
	7.2.2	Snow Load (Case2)	17
8	Analysi	S	18
	8.1 30) model	18
		sults	19
	8.2.1	Maximum vertical deflection (serviceability)	19
	8.2.2	Maximum horizontal deflection (serviceability)	20
	8.2.3	Maximum Bending Moment in Major Axis	21
	8.2.4	Maximum Bending Moment in Minor Axis	22
	8.2.5	Maximum Shear	23
	8.2.6	Maximum Axial Force	24
	8.2.7	Maximum Reactions	25
9		lember Design	26
	9.1 30	x2 CHS	27

2 | Page

Address: 21/1-7 Jordan St, Gladesville NSW 2111 **Phone:** (02) 8964 1818

Email: info@primeengineers.com.auAddress: 21/1-7 JordaWeb: www.primeengineers.com.auPhone: (02) 8964 18

Prime Consulting Engineers Pty. Ltd.

9	2 30x2 SHS	28
10	Pegging Design	30
11	Summary and Recommendations	32
12	Appendix A – Detail Drawings	33

3 | Page Email: info@primeengineers.com.au Address: 21/1-7 Jordan St, Gladesville NSW 2111 Phone: (02) 8964 1818

1 Introduction and Scope:

The report and certification are the sole property of Prime Consulting Engineers Pty. Ltd.

Prime Consulting Engineers have been engaged by Extreme Marquees Pty. Ltd. to carry out a structural analysis of 8m dome structure for wind loads region A (non-cyclonic) and snow loads for sub-alpine regions. It should be noted that the outcome of our analysis is limited to the selected items as outlined in this report.

This report shall be read in conjunction with the documents listed in the references (Section 1.2)

1.1 Project Description

The report examines the effect of 3s gust wind of (refer to summary) and snow loads of subalpine region positioned for the worst effect on the 8m dome structure. The result of this report is also applicable to the smaller dome structure with identical member sizes. The relevant Australian Standards AS1170.0:2002 General principles, AS1170.1:2002 Permanent, imposed and other actions, AS1170.2:2021 Wind actions and AS1170.3 Snow actions are used. The design check is in accordance with AS4100:1998 steel structures.

1.2 References

- The documents referred to in this report are as follows:
 - Report of results produced through SAP2000 V24 software & excel spreadsheets.
 - Detail drawing provided by manufacturer. Refer to appendix 'A'.
- The basic standards used in this report are as follows:
 - AS 1170.0:2002 Structural Design Actions (Part 0: General principles)
 - AS 1170.1:2002 Structural Design Actions (Part 1: Permanent, imposed, and other actions)
 - AS 1170.2:2021 Structural Design Actions (Part 2: Wind Actions)
 - AS 1170.3:2003 Snow and ice actions.
 - AS4100:1998 Steel Structures.
- Section Properties of Steel (Q235) Section provided by the client.
- The program(s) used for this analysis are as follows:
 - o SAP2000 V24
 - Microsoft Excel

1.3 Notation

AS/NZS Australian Standard/New Zealand Standard

FEM/FEA Finite Element Method/Finite Element Analysis

Address: 21/1-7 Jordan St, Gladesville NSW 2111

Email: info@primeengineers.com.au Web: www.primeengineers.com.au Phone: (02) 8964 1818

SLS Serviceability Limit State

ULS Ultimate Limit State

2 Design Overview

2.1 Geometry Data

DOME RANGE4m/5m/6m/7m/8m/9m/10m/11m/12m

ITEM	SPECIFICATION									
Size	4m	5m	6m	7m	8m	9m	10m	11m	12m	
Ceiling Height	2.4m	2.5m	3m	3.5m	4m	4.5m	5m	5.5m	6m	
Door Size	1200mm W	1200mm W x 1800mm H			1500mm W × 2100mm H			1500mm W x 2400mm H		
Dome Style	Lapela	77					10			
Floor Space	12.5 sq.m	17.8 sq.m	28 sq.m	38 sq.m	50 sq.m	63 sq.m	78 sq.m	95 sq.m	113 sq.m	
Stand up Capacity	15	24	34	46	60	76	94	114	136	
Sit down Capacity	10	16	23	31	40	51	63	76	90	
Frame Material	Steel	*				- N.		*	-1	

Isometric view of structures

Address: 21/1-7 Jordan St, Gladesville NSW 2111

5 | Page

Phone: (02) 8964 1818

Email: <u>info@primeengineers.com.au</u> **Web:** <u>www.primeengineers.com.au</u>

2.2 Assumptions & Limitations

- The erected structure is for temporary use only.
- For forecast winds in excess of (refer to summary) the dome structure should be completely dismantled.
- The structure may only be used in regions with wind and snow classifications no greater than the limits specified in cl. 5 & 6 of this report.
- Parameters used for wind & snow calculations:
 - o TC 2
 - Wind Region A
 - Sub-alpine region (Orange, NSW)
- Topographical factors such as erecting the structure on the crest of a hill or on the top of an escarpment may result in a higher wind speed classification. Thus, special considerations should be taken to the topographical location of the installation site.
- Shall the site conditions, wind or snow parameters exceed prescribed design actions (refer to cl.7), Prime Consulting Engineers Pty. Ltd. should be informed to determine appropriate wind/snow classifications and amend computations accordingly.
- It is assumed that the structure is fully enclosed with equally permeable side walls to calculate Wind Internal Forces.

2.3 Exclusions

- Design of fabric
- Wind actions due to tropical or severe tropical cyclonic areas.
- Snow actions due to snow loads other than Orange, NSW.
- Super imposed loads such as live load.

2.4 Design Parameters and Inputs

2.4.1 Load Cases

1.	G	Permanent actions (Dead load)
3.	W_{u}	Ultimate wind action (ULS)
4.	W_s	Serviceability wind action (SLS)
5.	S	Snow action (SLS)

Email: info@primeengineers.com.au Address: 21/1-7 Jordan St, Gladesville NSW 2111

2.4.2 Load Combinations

Strength (ULS):

1. 1.35G Permanent action only

0.9G+W_u Permanent and wind actions
 1.2G+W_u Permanent and wind actions

5. 1.2G+S Permanent and snow actions

Serviceability (SLS):

2. G+W_s Wind service actions

3 Specifications

3.1 Material Properties

Material Pro	Material Properties 03a - Steel Data													
Material	Fy	Fu	EffFy	EffFu	SHard	SMax	SRup	FinalSlope						
Text	KN/m2	KN/m2	KN/m2	KN/m2	Unitless	Unitless	Unitless	Unitless						
Q235	235000	390000	260000	430000	0.015	0.11	0.17	-0.1						

3.2 Member Sizes & Section Properties

TABLE: Frame Section Properties 01 - General													
SectionName	t3	t2	tf	tw	Area	TorsConst	133	122	Z33	Z22	R33	R22	
Text	mm	mm	mm	mm	mm2	mm4	mm4	mm4	mm3	mm3	mm	mm	
32x2 CHS	32			2	188.5	42600	21300	21300	1331.3	1331.3	10.63	10.63	
40x40x2	40	40	2	2	304	109744	73365.33	73365.33	4336	4336	15.535	15.535	

4 Design Loads

Self weight	G	self weight
3s 100km/hr gust	Wu	0.751 C _{fig} (kPa)
Sub-alpine snow load	Ws	0.33 - 0.64 (kPa)

Email: info@primeengineers.com.au Address: 21/1-7 Jordan St, Gladesville NSW 2111

5 Wind Analysis

5.1 Ultimate

PCE

Project: 8m Dome Structure

Jon no. 22-211-2 Designer: KZ

PRIME CONSULTING ENGINEERS PTY. LTD Date: 4/05/2022 Amendment: A-12/05/2022

Name	Symbol	Value	Unit	Notes	Ref.							
General												
Importance level		3			Table 3.1 - Table 3.2 (AS1170.0)							
Annual probability of exceedance		Temporary			Table 3.3							
Regional gust wind speed		139.97	Km/hr									
Regional gust wind speed	V_{R}	38.88	m/s									
Wind Direction Multipliers	M_{d}	1			Table 3.2 (AS1170.2)							
Terrain Category	TC	2			,							
Terrain Category Multiplier	$M_{Z,Cat}$	0.91										
Shield Multiplier	Ms	1			4.3 (AS1170.2)							
Topographic Multiplier	M_{t}	1			4.4 (AS1170.2)							
Site Wind Speed	$V_{\text{Site},\beta}$	35.38	m/s	$V_{Site,\beta}=V_R*M_d*M_{z,cat}*M_S,M_t$								
Pitch	α	0	Deg									
Pitch	α	0.000	rad									
Width	В	8	m									
Width Span	S_{w}	-	m									
Length	D	8	m									
Height	Z	2	m									
Bay Span		-	m									
	h/d	0.25										
	h/b	0.25										
		Wind	Pressure	2	1							
hoair	ρ	1.2	Kg/m ³									

Email: info@primeengineers.com.au Address: 21/1-7 Jordan St, Gladesville NSW 2111

dynamic response factor	C_{dyn}	1										
Wind Pressure	$ ho$ * C_{fig}	0.751	Kg/m²	ρ =0.5 ρ air*($V_{des,\beta}$) ² * C_{fig} * C_{dyn}	2.4 (AS1170.2)							
	WIND DIF	RECTION 1	(Perpendi	icular to Length)								
Internal Pressure												
Opening Assumption												
	Without	Dominant (Opening									
Internal Pressure Coefficient (Without Dominant) MIN		-0.3										
Internal Pressure Coefficient (Without Dominant) MAX		0.2										
Internal Pressure Coefficient (With Dominant) MIN												
Internal Pressure Coefficient (With Dominant) MAX												
N Combination Factor	V _a :	1		Cpi= N*Cpe								
Combination Factor Internal Pressure Coefficient	K _{C,i}	1										
MIN	$C_{p,i}$	-0.30										
Internal Pressure Coefficient MAX	$C_{p,i}$	0.20										
		Extern	al Pressu	re	T							
1. Windward Wall												
External Pressure Coefficient	C_P,e	0.7										
Area Reduction Factor	Ka	1			Table 5.4							
combination factor applied to internal pressures	$K_{C,e}$	0.8										
local pressure factor	K_{l}	1										
porous cladding reduction factor	Kp	1										
aerodynamic shape factor	C _{fig,e}	0.56										
Wind Wall Pressure	Р	0.42	kPa									
2. Leeward Wall	_											
External Pressure Coefficient	C _{P,e}	-0.5			T							
Area Reduction Factor	Ka	1			Table 5.4							
combination factor applied to internal pressures	$K_{\text{C,e}}$	0.8										
local pressure factor	K_{l}	1										
porous cladding reduction factor	\mathbf{K}_{p}	1										
aerodynamic shape factor	$C_{\text{fig,e}}$	-0.4										

9 | Page

Address: 21/1-7 Jordan St, Gladesville NSW 2111 **Phone:** (02) 8964 1818

Email: info@primeengineers.com.au Web: www.primeengineers.com.au

_eeward Wall Pressure	Р	-0.30	kPa		
3. Side Wall					
Area Reduction Factor	Ka	1			Table 5.4
combination factor applied to internal pressures	K _{C,e}	0.8			
local pressure factor	Κı	1			
porous cladding reduction factor	Κ _p	1			
External Pressure Coefficient	C _{P,e}	-0.65		0 to 1h	
External Pressure Coefficient	$C_{P,e}$	-0.5		1h to 2h	
External Pressure Coefficient	$C_{P,e}$	-0.3		2h to 3h	
External Pressure Coefficient	$C_{P,e}$	-0.2		>3h	
aerodynamic shape factor	$C_{fig,e}$	-0.52		0 to 1h	
aerodynamic shape factor	$C_{\text{fig,e}}$	-0.4		1h to 2h	
aerodynamic shape factor	$C_{\text{fig,e}}$	-0.24		2h to 3h	
aerodynamic shape factor	$C_{\text{fig,e}}$	-0.16		>3h	
Side Wall Pressure	Р	-0.39	kPa	0 to 1h	
Side Wall Pressure	Р	-0.30	kPa	1h to 2h	
Side Wall Pressure	Р	-0.18	kPa	2h to 3h	
Side Wall Pressure	Р	-0.12	kPa	>3h	
4. Roof					
r (rise)	r	4	m		
h/r	h/r	0.50			
Breadth Effect		1.00		(b/d)^0.25>1	
Rise-to-span ratio	r/d	0.50			
4.1 Roof Windward Quarter					
U	U	2	m		Table C3
Area Reduction Factor	Ka	1			
combination factor applied to internal pressures	K _{C,e}	0.8			
local pressure factor	Κı	1			
porous cladding reduction factor	Kp	1			
External Pressure Coefficient	C _{P,e}	0.3			
Factored External Pressure	C _{P,e}	0.30			
Coefficient					
aerodynamic shape factor	$C_{\text{fig,e}}$	0.24			
Pressure	Р	0.18	kPa		

10 | Page **Address:** 21/1-7 Jordan St, Gladesville NSW 2111 **Phone:** (02) 8964 1818

Email: info@primeengineers.com.au Web: www.primeengineers.com.au

τ	Т	4	m
Area Reduction Factor	Ka	1	
combination factor applied to internal pressures	K _{C,e}	0.8	
local pressure factor	K_{l}	1	
porous cladding reduction factor	K_p	1	
External Pressure Coefficient	$C_{P,e}$	-0.65	
Factored External Pressure Coefficient	$C_{P,e}$	-0.65	
aerodynamic shape factor	$C_{\text{fig,e}}$	-0.52	
Pressure	Р	-0.39	kPa
4.2 Roof Centre Half			
D	D	2	m
Area Reduction Factor	Ka	1	
combination factor applied to internal pressures	$K_{\text{C,e}}$	0.8	
local pressure factor	K_{l}	1	
porous cladding reduction factor	K_p	1	
External Pressure Coefficient	$C_{P,e}$	-0.2	
Factored External Pressure Coefficient	$C_{P,e}$	-0.20	
aerodynamic shape factor	$C_{\text{fig,e}}$	-0.16	
Pressure	Р	-0.12	kPa

5.1.1 Summary Forces

	WIND EXTERNAL PRESSURE (kPa)											
		Wind Direction										
	Windward		0.42	2								
	Leeward		-0.3	0								
Sidewall	0m - 2m		-0.3	9								
	2m - 4m		-0.30									
	4m - 6m		-0.18									
	> 6m		-0.12									
Roof												
	Windward Quarter (U)	2m	0.18									
	Centre Half (T)	4m	-0.39									
	Leeward Quarter (D)	2m	-0.12									
	Wind Internal	Pressure (kPa)										
			-0.23	0.15								

11 | Page Address: 21/1-7 Jordan St, Gladesville NSW 2111

Email: info@primeengineers.com.auAddress: 21/1-7 Jordan 8Web: www.primeengineers.com.auPhone: (02) 8964 1818

6 Snow Load

6.1 Sub-Alpine

 $S = Sg \times Ce \times \mu i$

Annual probability of exceedance: 1/20

Snow region: Orange, NSW

Sg = 0.9kPa

 $C_e = 1$

Average slope:

Segment 1: $9^{\circ} \rightarrow \mu = 0.71$ Segment 2: $36^{\circ} \rightarrow \mu = 0.37$

Segment 3: $72^{\circ} \rightarrow \mu = 0$

Snow loads:

Segment 1: 0.64 kPa Segment 2: 0.33 kPa Segment 3: 0.0 kPa

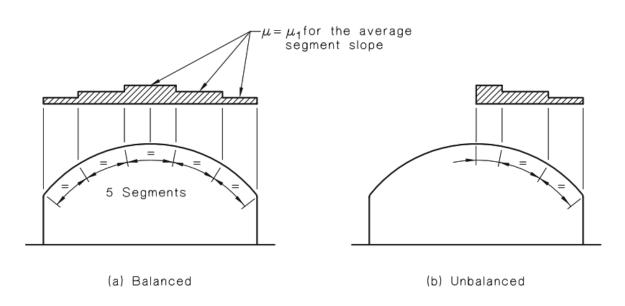
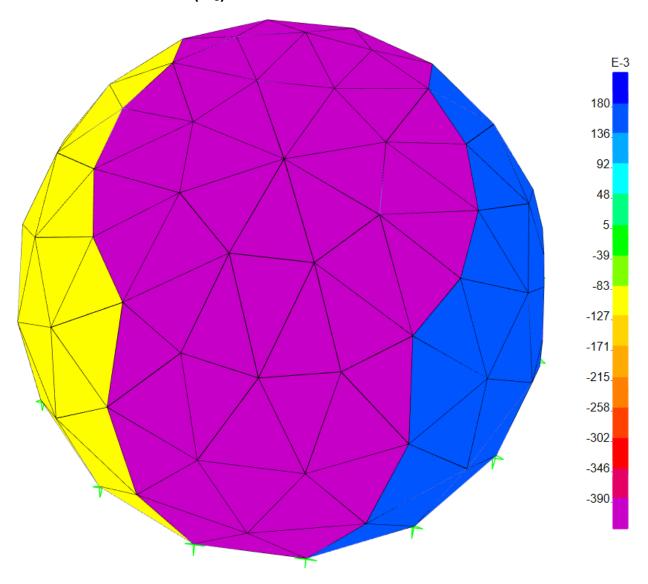


FIGURE 7.4 TYPES OF SNOW LOAD ON CURVED ROOFS (SUB-ALPINE)

12 | Page

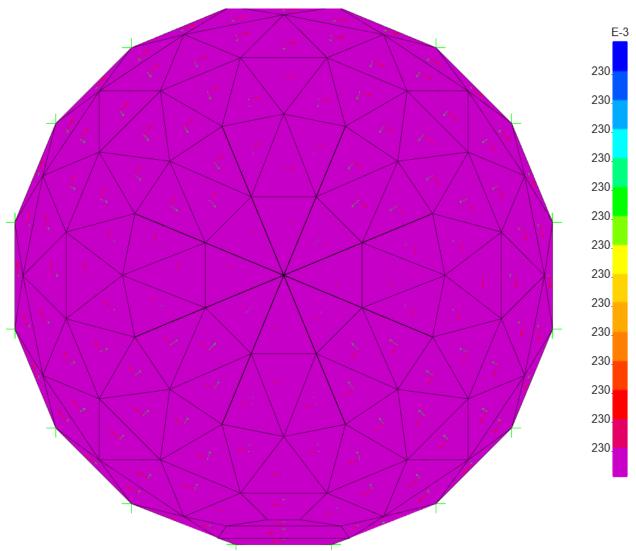
Address: 21/1-7 Jordan St, Gladesville NSW 2111

Phone: (02) 8964 1818

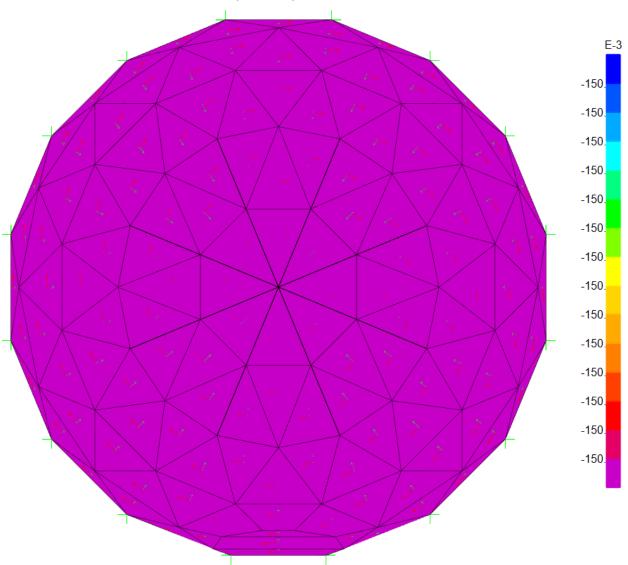

Email: <u>info@primeengineers.com.au</u> **Web:** <u>www.primeengineers.com.au</u>

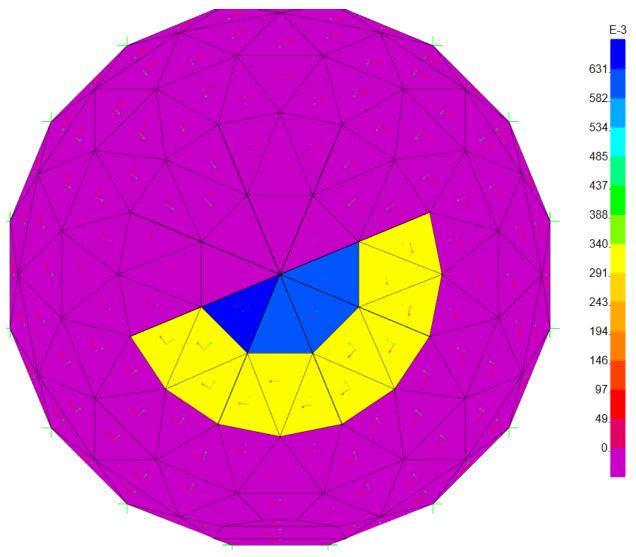
7 Load Diagrams

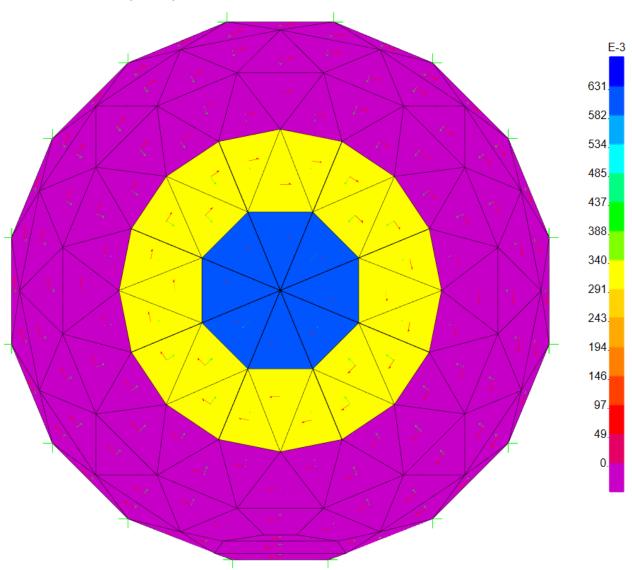
7.1 Wind Load


7.1.1 Wind Load Ultimate (Wu)

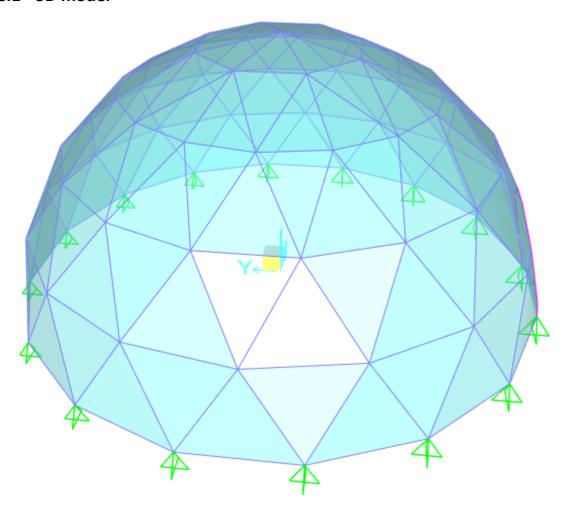
Email: <u>info@primeengineers.com.au</u> **Web:** <u>www.primeengineers.com.au</u>



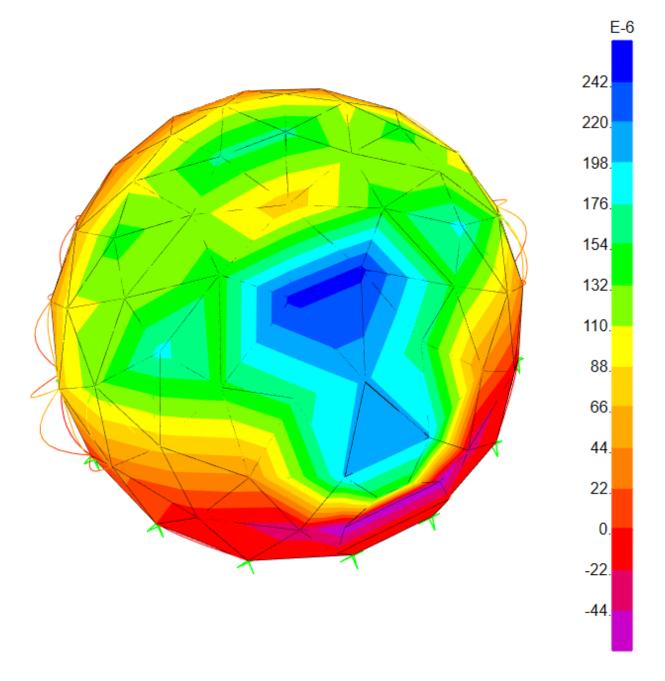

7.1.3 Wind Load Internal Suction (W_{I,suction})


7.2 Snow Load

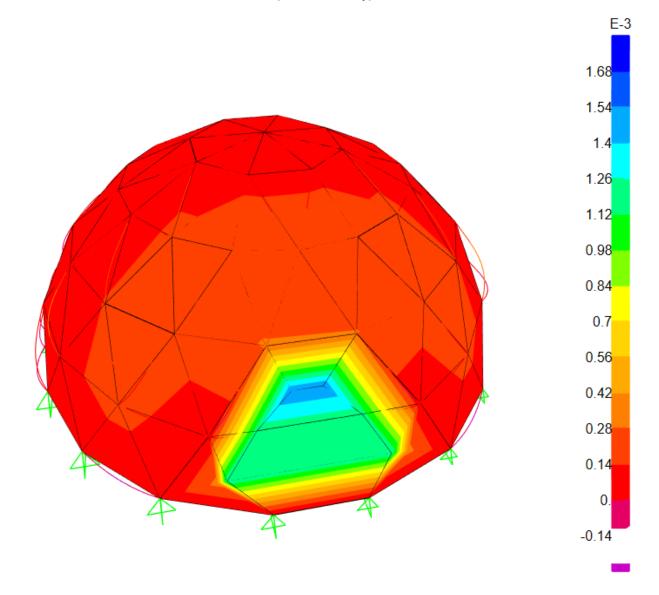
7.2.1 Snow Load (Case1)


7.2.2 Snow Load (Case2)

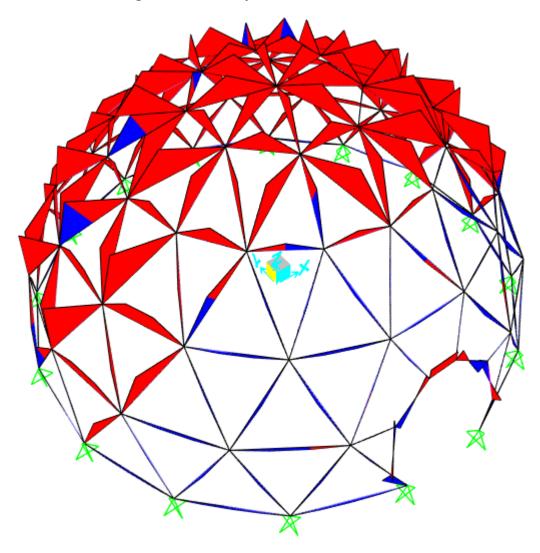
8 Analysis


8.1 3D model

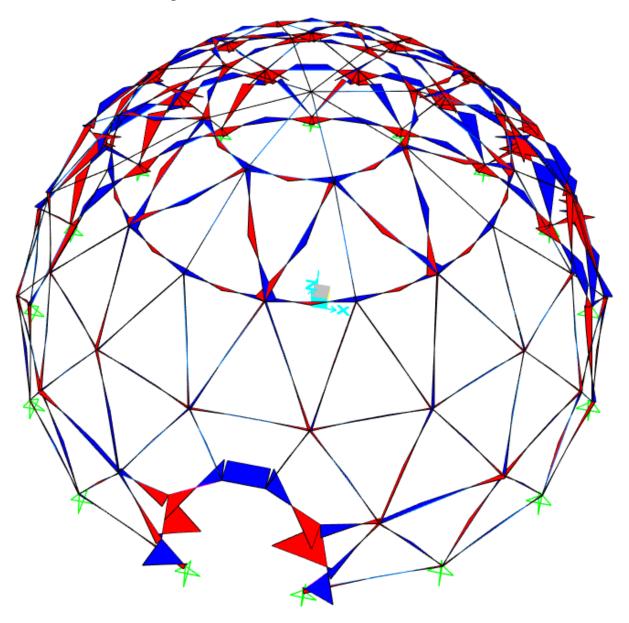
8.2 Results


8.2.1 Maximum vertical deflection (serviceability)

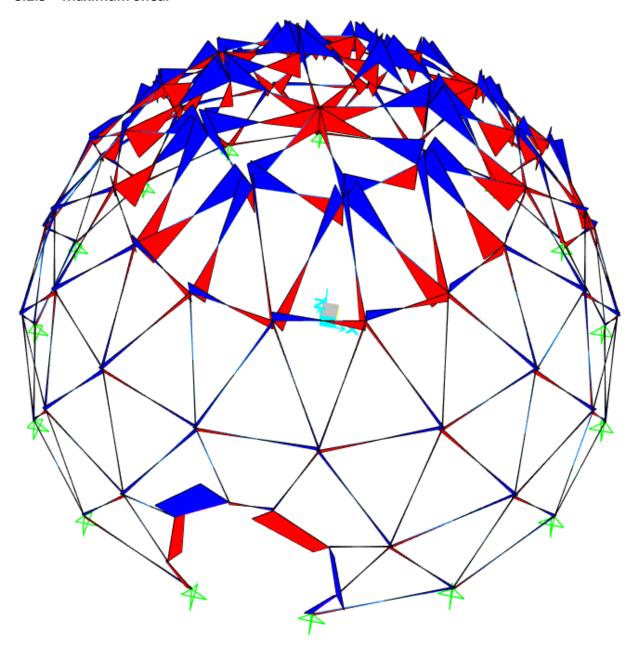
Email: <u>info@primeengineers.com.au</u> **Web:** <u>www.primeengineers.com.au</u> **Address:** 21/1-7 Jordan 9 **Phone:** (02) 8964 1818



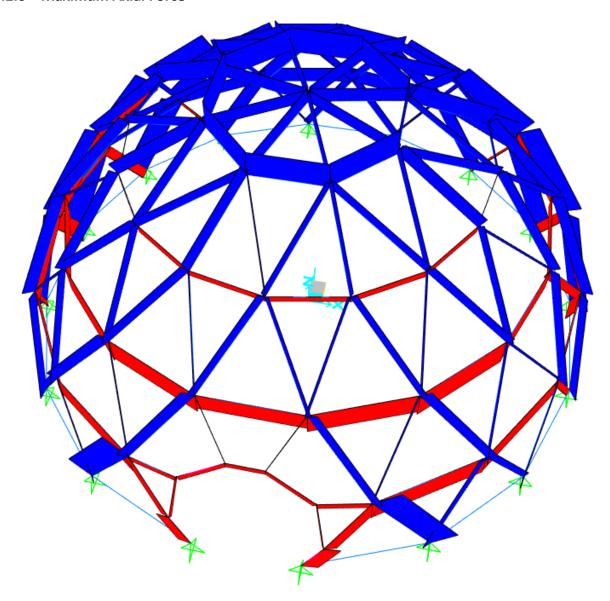
8.2.2 Maximum horizontal deflection (serviceability)



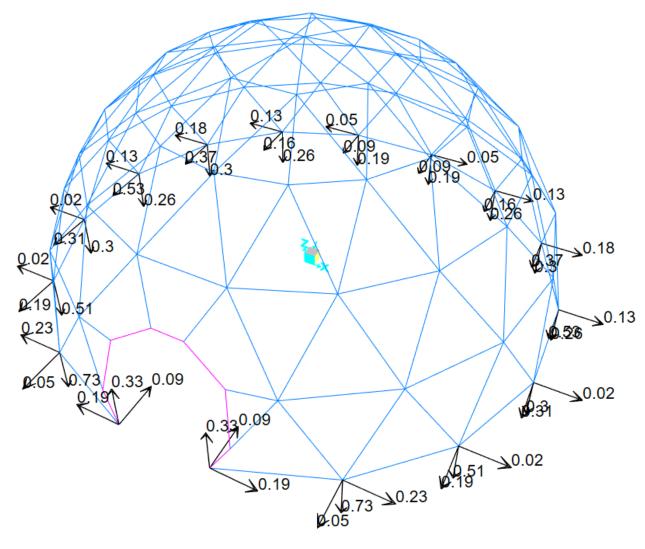
8.2.3 Maximum Bending Moment in Major Axis



8.2.4 Maximum Bending Moment in Minor Axis

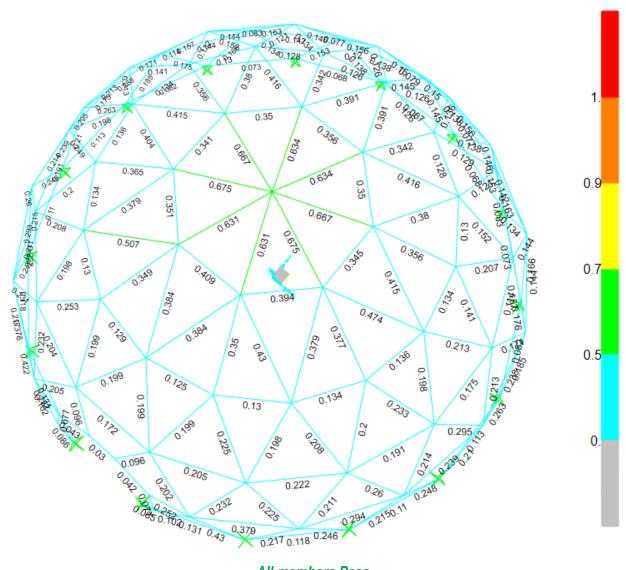


8.2.5 Maximum Shear



8.2.6 Maximum Axial Force

8.2.7 **Maximum Reactions**

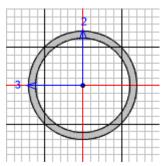


Max. $F_x = 0.8 \text{ kN}$ Max. $F_v = 0.8 \text{ kN}$ Max. $F_{Z, Bearing} = 1.72 \text{ kN}$ Max. $F_{Z, uplift} = 1.58 \text{ kN}$

9 Steel Member Design

All members pass for the defined design wind actions. Refer to Appendix 'B' for section capacities and factor of safeties.

All members Pass


Email: info@primeengineers.com.au **Web:** www.primeengineers.com.au

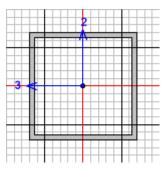
Address: 21/1-7 Jordan St, Gladesville NSW 2111

26 | Page

9.1 30x2 CHS

AS 4100-1998 STEE Units : KN, m,		(Summa	ary for Comb	o and Statio	n)	
Frame: 209 Length: 1.251 Loc: 0.626	X Mid: 0.571 Y Mid: -0.236 Z Mid: 3.902	Combo: Shape: Class:		Frame	n Type: Bra Type: Bra pl Rot: 0. c	aced Frame
PhiB=0.9	PhiC=0.9	PhiTY=	0.9	PhiTF=0.9	PhiS=	=0.9
A=1.885E-04 J=4.260E-08 E=206000000. RLLF=1.	I33=2.130E-08 I22=2.130E-08 Fy=235000. Fu=370000.	r33=0. r22=0. Ry=1.1 SteelT	011	Z33=1.331E- Z22=1.331E- S33=1.803E- S22=1.803E-	06 Av2=9	9.453E-05 9.453E-05
STRESS CHECK FORC Location 0.626	ES & MOMENTS (Con N* -0.858	mbo COMB5 M33* 0.051	M22*	V2* 0.009		
PMM DEMAND/CAPACI D/C Ratio:	0.16 = 0.022 +	0.138 +) + M22*/(ph	< 0.95 i*Ms22)	OK
BASIC FACTORS Buckling Mode Major Flexure Minor Flexure Major Braced Minor Braced LTB	1.	Factor	KL/r 117.726 117.726 117.726 117.726 164.816			
AXIAL FORCE & BIA						
Factor Major Bending Minor Bending	1.	aced ke 1. 1.	Sway ke 1. 1.	Delta_b 1.032 1.	Delta_s 1. 1.	
LTB Factors	Lltb 1.	Kt 1.	K1 1.4	Kr 1.	Alpha_m 1.388	Alpha_s 1.003
Axial Factors	Steel Type HR	Kf 1.	Kt 1.	Alpha_a 15.853	Alpha_b -1.	Alpha_c 0.552
	Element La	ambda_e	Lambda_ep	Lambda_ey	Lambda_ew	Compactness

27 | Page


Address: 21/1-7 Jordan St, Gladesville NSW 2111 Phone: (02) 8964 1818

Email: info@primeengineers.com.au Web: www.primeengineers.com.au

Bending Axial	Any Any	15.04 15.04	50.	120. 82.	1.000E+14	Compact Compact
Effective Pro	ZeMajor 1.803E-06	ZeMinor 1.803E-06	de 0.032	Aeff 1.885E-04		
Major Moment Minor Moment	M* 0.053 3.303E-06	Ms 0.424 0.424	Mr 0.415 0.415	Mi 0.407 0.407	Nc 24.471 24.471	
Major Moment	Mo,cr 6.901	Mb 0.424	Mo 0.407	Mc 0.407	Mt 0.407	
Axial	N* -0.858	Ns 44.296	Nc 24.471	Nt 44.296	Noz 14934.648	
SHEAR CHECK						
Major Shear Minor Shear	V* Force 0.009 5.065E-05	Vv Capacity 14.352 14.352	Stress Ratio 0.001 3.529E-06	Status Check OK OK		

9.2 30x2 SHS

AS 4100-1998 STEEL SECTION CHECK (Summary for Combo and Station) Units : KN, m, C Frame: 288 X Mid: -0.829 Combo: COMB8 Design Type: Brace
Length: 0.513 Y Mid: -3.876 Shape: 40x40x2 Frame Type: Braced Frame
Loc: 0.513 Z Mid: 0.215 Class: Compact Princpl Rot: 0. degrees PhiTY=0.9 PhiB=0.9 PhiC=0.9 PhiTF=0.9 PhiS=0.9 STRESS CHECK FORCES & MOMENTS (Combo COMB8) Location N* M33* M22* V2* V3* T* 0.513 -0.973 0.078 -0.007 -0.145 -0.014 0.004 PMM DEMAND/CAPACITY RATIO (8.4.4.1)

28 | Page Email: info@primeengineers.com.au Address: 21/1-7 Jordan St, Gladesville NSW 2111 Web: www.primeengineers.com.au

D/C Ratio:	0.086 = 0.08 = M33*	36 /(phi*Mo33)			< 0.95	OK
BASIC FACTORS Buckling Mode Major Flexure Minor Flexure Major Braced Minor Braced LTB	K Factor 1. 1. 1. 1.	L Factor	KL/r 33.044 33.044 33.044 33.044 46.261			
AXIAL FORCE & BIAX Factor Major Bending Minor Bending	L 1.	DESIGN (8.0 Braced ke 1. 1.	4.4.1) Sway ke 1. 1.	Delta_b 1.001 1.002	_	0.999-0.997
LTB Factors	1.	1.	1.4	1.	1.796	1.027
Axial Factors	Steel Type HR	Kf 1.	Kt 1.	Alpha_a 15.052	Alpha_b -1.	Alpha_c 0.988
Slenderness Major/Flange /Web Minor/Flange /Web Axial/Flange /Web	Lambda_e 17.452 17.452 17.452 17.452 17.452 17.452	Lambda_ep 30. 82. 82. 30.	Lambda_ey 45. 115. 115. 45. 45.	Lambda_ew 180. 180. 180. 180.	Lambda_e/ey 0.388 0.152 0.152 0.388 0.388 0.388	
Effective Pro	ZeMajor 4.336E-06	ZeMinor 4.336E-06	b-be 0.	d-de 0.	Aeff 3.040E-04	
Major Moment Minor Moment	M* 0.078 -0.007	Ms 1.019 1.019	Mr 1.019 1.019	Mi 1.003 1.003	Nc 70.609 70.609	
Major Moment	Mo,cr 50.112	Mb 1.019	Mo 1.003	Mc 1.003	Mt 1.003	
Axial	N* -0.973	Ns 71.44	Nc 70.609	Nt 71.44	Noz 18014.713	
SHEAR CHECK	V*	Vv	Stress	Status		
Major Shear Minor Shear	Force 0.145 0.014	Capacity 20.304 20.304	Ratio 0.007 0.001	Check OK OK		

29 | Page
Email: info@primeengineers.com.au
Web: www.primeengineers.com.au
Address: 21/1-7 Jordan St, Gladesville NSW 2111
Phone: (02) 8964 1818

10 Pegging Design

Email: info@primeengineers.com.au

Project: 8m Dome

Jon no. 22-211-2

Date: 4/05/2022

PRIME CONSULTING ENGINEERS PTY, LTD			
Name	Value	Unit	Notes
<u>minimum emb</u>	edment depth	for lateral bear	ring:
Max. Horizontal Force	0.8	kN	
Max. Vertical Force	1.58	kN	
Number of Pegs	2		
Horizontal Load per peg	0.4	kN	
Vertical Load per peg	0.8	kN	
Sticking out of Ground	0	m	
S (bearing capacity)	150	kPa	To be confirmed by the Geotechnical engineer
arphi	0.02	m	
н	133	mm	
М	0.00	kNm	
γ	19	kN/m³	To be confirmed by the Geotechnical engineer
min required Embedment:	133	mm	
F.S	9.00		
	OK		
	<u>Bending:</u>		
Profile _	φ 20mm Peg	_	
Fy _	350	mPa	
Ze	785.4	mm3	
phi	0.9	, . ,	
phi Ms	0.25	kNm	
	OK		
	Pull out Chook	ina:	
Clay:	Pull out Check	<u>g.</u>	
Olay.			
Cu	25	kPa	To be confirmed by the Geotechnical engineer

30 | Page

Address: 21/1-7 Jordan St, Gladesville NSW 2111

Prime Consulting Engineers Pty. Ltd.

α (reduction factor)	1	
Provided Embedment	1200	mm
L/d	60	
Rs	0.96	
Perimeter	63	mm
Total Surface Area	0.075	m ²
min required Embedment:	0.53	m
F.S	2.28	
	OK	
Coefficient of Friction	0.6	
Equivalent Ballast	0.16	tonne

Email: info@primeengineers.com.au
Web: www.primeengineers.com.au

31 | Page Address: 21/1-7 Jordan St, Gladesville NSW 2111

PCE

11 Summary and Recommendations

• The 8m Dome Structure as specified is capable of withstanding 3s gust wind speed up to

140km/hr in region A, TC2.

• The dome structure is required to be dismantled for forecast winds in excess of 140km/hr.

• The dome structure is designed to withstand snow loads of sub-alpine region (Orange,

NSW) with maximum ground snow (Sg) 0.9kPa.

For uplift due to 140km/hr, 1.8 kN (180kg) holding down weight/per support is required.

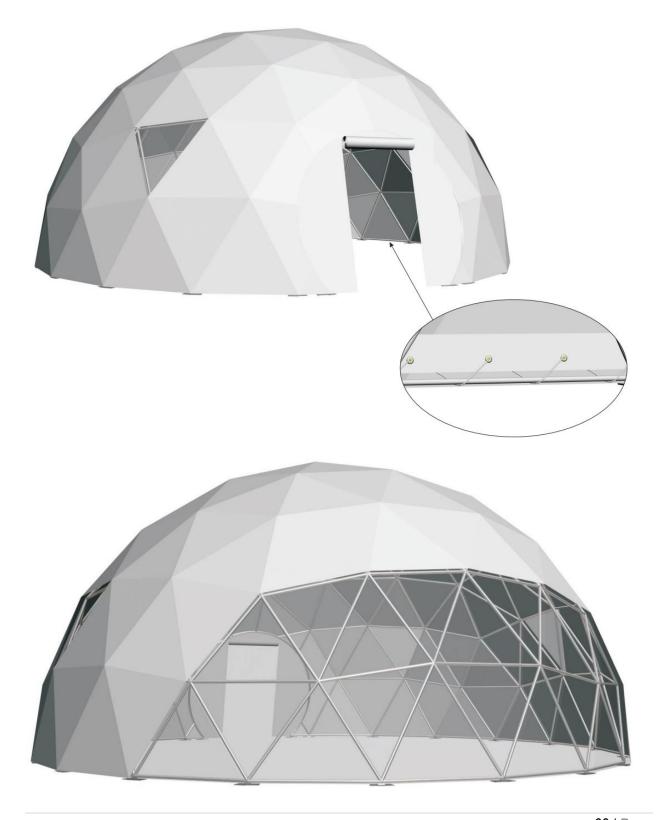
(16 anchor points/support in total). Alternatively, pegging system described in Cl. 10 can

be used.

Design of fabric is by others.

Yours faithfully,

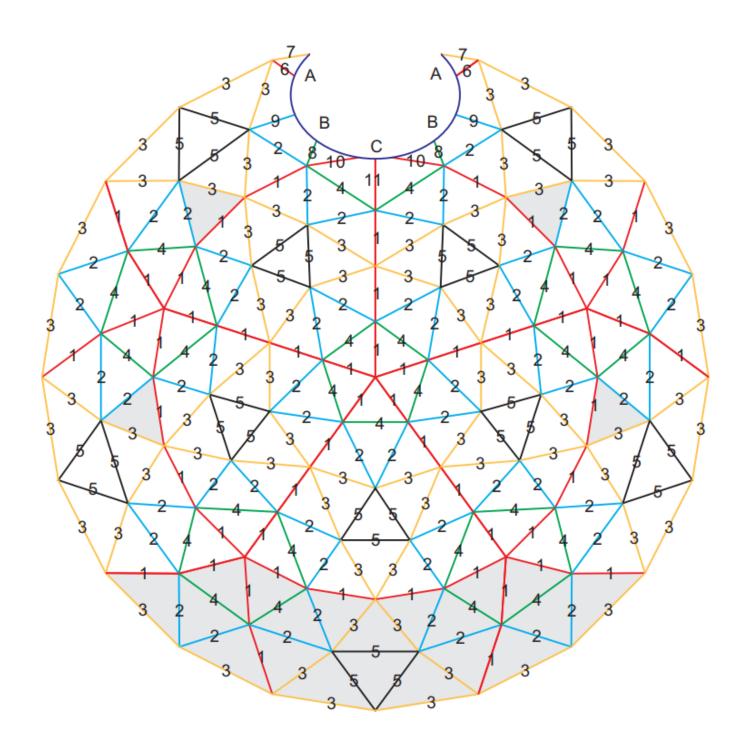
Prime Consulting Engineers Pty. Ltd.


Kevin Zia, BEng, Meng, MIEAust, CPENG NER

Address: 21/1-7 Jordan St, Gladesville NSW 2111

32 | Page

12 Appendix A – Detail Drawings



33 | Page

Address: 21/1-7 Jordan St, Gladesville NSW 2111 **Phone:** (02) 8964 1818

Email: info@primeengineers.com.au **Web:** www.primeengineers.com.au

Address: 21/1-7 Jordan St, Gladesville NSW 2111 **Phone:** (02) 8964 1818

Email: info@primeengineers.com.au Web: www.primeengineers.com.au