

Prime Consulting Engineers Pty. Ltd.

Design Report:

4m X 6m Inflatable Marquee

For

Ref: R-22-253-1

Date: 01/07/2022

Amendment: -

Prepared by: KZ

Checked by: BG

CONTENTS

1	Intro	oduction and Scope:	3
	1.1	Project Description	3
	1.2	References	3
	1.3	Notation	3
2	Desi	gn Overview	4
	2.1	Geometry Data	4
	2.2	Assumptions & Limitations	5
	2.3	Exclusions	5
	2.4	Design Parameters and Inputs	5
	2.4.	1 Load Cases	5
	2.4.	2 Load Combinations	5
3	Desi	gn Loads	6
4	Win	d Analysis	7
	4.1	Ultimate	7
	4.1.1	Summary Forces	13
5	Load	Diagrams	14
	5.1	Wind Load	14
	5.1.		14
		2 Wind Direction 1 (max)	15
		3 Wind Direction 2 (min)	16
		4 Wind Direction 2 (max)	17
	5.1.	5 Wind Load Internal Suction (W _{1,suction})	18
	5.1.		19
6	Ana	•	20
	6.1	3D model	20
	6.2	Results	21
	6.2.	1 Maximum Reactions	21
7	Hold	ling Down	22
8	Sum	mary and Recommendations	23
9	Арр	endix A – Detail Drawings	24

1 Introduction and Scope:

The report and certification are the sole property of Prime Consulting Engineers Pty. Ltd.

Prime Consulting Engineers have been engaged by Extreme Marquees Pty. Ltd. to carry out a wind analysis on 4m X 6m Inflatable marquee for various wind speeds (region A, non-cyclonic). It should be noted that the outcome of our analysis is limited to the selected items as outlined in this report.

This report shall be read in conjunction with the documents listed in the references (Section 1.2)

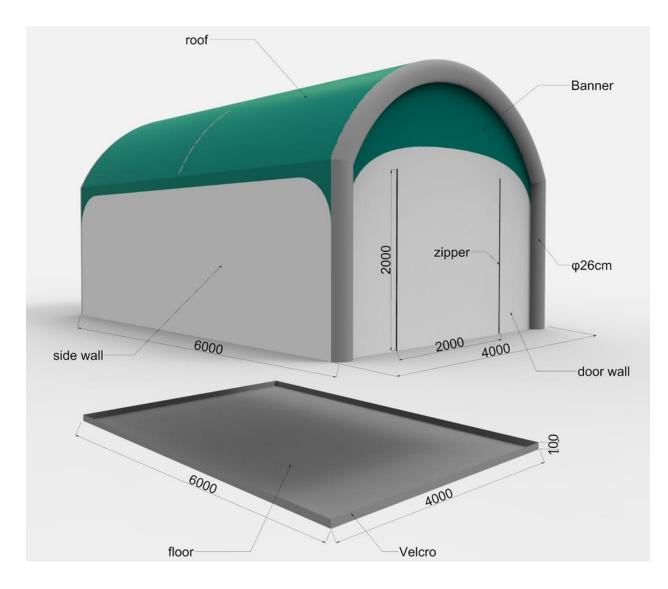
1.1 Project Description

The report examines the effect of 3s gust wind of various wind speeds (refer to summary) positioned for the worst effect on the 4m X 6m Marque structure to determine holding down weight requirements. The relevant Australian Standards AS1170.0:2002 General principles, AS1170.1:2002 Permanent, imposed and other actions and AS1170.2:2021 Wind are used.

1.2 References

- The documents referred to in this report are as follows:
 - Report of results produced through SAP2000 V24 software & excel spreadsheets.
 - Detail drawing provided by manufacturer. Refer to appendix 'A'.
- The basic standards used in this report are as follows:
 - AS 1170.0:2002 Structural Design Actions (Part 0: General principles)
 - $\circ~$ AS 1170.1:2002 Structural Design Actions (Part 1: Permanent, imposed, and other actions)
 - AS 1170.2:2021 Structural Design Actions (Part 2: Wind Actions)
- The program(s) used for this analysis are as follows:
 - o SAP2000 V24
 - Microsoft Excel

1.3 Notation


AS/NZS	Australian Standard/New Zealand Standard
--------	--

- FEM/FEA Finite Element Method/Finite Element Analysis
- SLS Serviceability Limit State
- ULS Ultimate Limit State

2 Design Overview

2.1 Geometry Data

Isometric view of structures

2.2 Assumptions & Limitations

- The erected structure is for temporary use only.
- For forecast winds in excess of (refer to summary) the inflatable structure should be completely deflated.
- The structure may only be used in regions with classifications no greater than the limits specified in cl. 4 of this report.
- Parameters used for wind & snow calculations:
 - TC 2
 - Wind Region A
- Topographical factors such as erecting the structure on the crest of a hill or on the top of an escarpment may result in a higher wind speed classification. Thus, special considerations should be taken to the topographical location of the installation site.
- Shall the site conditions/wind parameters exceed prescribed design wind actions (refer to Cl.4), Prime Consulting Engineers Pty. Ltd. should be informed to determine appropriate wind classifications and amend computations accordingly.
- It is assumed that the structure is fully enclosed with equally permeable side walls or completely sealed walls to calculate Wind Internal Forces.
- The structure has the total self-weight of 40kg.

2.3 Exclusions

- Design of PVC members & fabric
- Wind actions due to tropical or severe tropical cyclonic areas.
- Snow actions
- Super imposed loads such as live load.

2.4 Design Parameters and Inputs

2.4.1 Load Cases

- 1. G Permanent actions (Dead load)
- 2. Wu Ultimate wind action (ULS)
- 3. Ws Serviceability wind action (SLS)

2.4.2 Load Combinations

Strength (ULS):

1.	1.35G	Permanent action only
2.	0.9G+W _u	Permanent and wind actions
3.	1.2G+Wu	Permanent and wind actions
4.	$1.2G+W_u+W_{IS}$	Permanent and wind actions
5.	$0.9G+W_u+W_{IP}$	Permanent and wind actions

Serviceability (SLS):

1. G+W_s

Wind service actions

3 Design Loads

Self weight	G	self weight
3s 80km/hr gust	Wu	0.242 C _{fig} (kPa)

4 Wind Analysis

4.1 Ultimate

or	Project:	4m x 6m in			
ALE	Jon no.	22-253-1		Designer:	ΚZ
PRIME CONSULTING ENGINEERS PTY, LTD	Date:	01/07/2022		Amendment:	-
Name	Symbol	Value	Unit	Notes	Ref.
		Ge	neral		
Importance level		2			Table 3.1 - Table 3.2 (AS1170.0)
Annual probability of exceedance		Temporary			Table 3.3
Regional gust wind speed		80.00	Km/hr		
Regional gust wind speed	VR	22.222	m/s		
Wind Direction Multipliers	Md	1			Table 3.2 (AS1170.2)
Terrain Category	тс	2			(//////////////////////////////////////
Terrain Category Multiplier	Mz,Cat	0.91			
Shield Multiplier	Ms	1			4.3 (AS1170.2)
Topographic Multiplier	Mt	1			4.4 (AS1170.2)
Site Wind Speed	$V_{\text{Site},\beta}$	20.22	m/s	Vsite,β=VR*Md*Mz,cat*Ms,Mt	
Width	В	4	m		
Width Span	Sw	4	m		
Length	D	6	m		
Height	Z	2.7	m		
Bay Span		3	m		
	h/d	0.45			
	h/b	0.68			
		Wind	Pressure		
hoair	ρ	1.2	Kg/m ³		
dynamic response factor	Cdyn	1			
Wind Pressure	ho*C _{fig}	0.245	Kg/m ²	ρ =0.5 ρ_{air} *(V _{des,β}) ² *C _{fig} *C _{dyn}	2.4 (AS1170.2)

	WIND DIR	RECTION 1 (I	Perpend	icular to Length)				
Internal Pressure								
Opening Assumption								
	Without	Dominant O	nonina					
	without	Dominant	penng					
Internal Pressure Coefficient (Without Dominant) MIN		-0.3						
Internal Pressure Coefficient (Without Dominant)		0.2						
Internal Pressure Coefficient (With Dominant) MIN								
Internal Pressure Coefficient (With Dominant) MAX								
N Combination Factor	K _{C,i}	1		Cpi= N*Cpe				
Internal Pressure Coefficient								
MIN	C _{p,i}	-0.30						
Internal Pressure Coefficient MAX	C _{p,i}	0.20						
		Externo	al Pressu	re				
1. Windward Wall								
External Pressure Coefficient	C _{P,e}	0.7						
Area Reduction Factor	Ka	1			Table 5.4			
combination factor applied to internal pressures	K _{C,e}	0.8						
local pressure factor	Kı	1						
porous cladding reduction factor	Kp	1						
aerodynamic shape factor	C _{fig,e}	0.56						
Wind Wall Pressure	Р	0.14	kPa					
Edge Column Force	F	0.21	kN/m					
Intermediate Column Force	F	0.41	kN/m					
2. Leeward Wall								
External Pressure Coefficient	C _{P,e}	-0.5						
Area Reduction Factor	Ka	1			Table 5.4			
combination factor applied to internal pressures	K _{C,e}	0.8						
local pressure factor	Kı	1						
porous cladding reduction factor	Kp	1						
aerodynamic shape factor	C _{fig,e}	-0.4						

Leeward Wall Pressure	Р	-0.10	kPa		
Edge Column Force	F	-0.15	kN/m		
Intermediate Column Force	F	-0.29	kN/m		
3. Side Wall					
Area Reduction Factor	Ka	1			Table 5.4
combination factor applied to internal pressures	K _{C,e}	0.8			
local pressure factor	Kı	1			
porous cladding reduction factor	Kp	1			
External Pressure Coefficient	$C_{P,e}$	-0.65		0 to 1h	
External Pressure Coefficient	C _{P,e}	-0.5		1h to 2h	
External Pressure Coefficient	C _{P,e}	-0.3		2h to 3h	
External Pressure Coefficient	C _{P,e}	-0.2		>3h	
aerodynamic shape factor	$C_{\text{fig,e}}$	-0.52		0 to 1h	
aerodynamic shape factor	C _{fig,e}	-0.4		1h to 2h	
aerodynamic shape factor	C _{fig,e}	-0.24		2h to 3h	
aerodynamic shape factor	C _{fig,e}	-0.16		>3h	
Side Wall Pressure	Р	-0.13	kPa	0 to 1h	
Side Wall Pressure	Р	-0.10	kPa	1h to 2h	
Side Wall Pressure	Р	-0.06	kPa	2h to 3h	
Side Wall Pressure	Р	-0.04	kPa	>3h	
4. Roof					
r (rise)	r	1.4	m		
h/r	h/r	1.93			
Breadth Effect		1.11		(b/d)^0.25>1	
Rise-to-span ratio	r/d	0.23			
4.1 Roof Windward Quarter					
U	U	1	m		Table C
Area Reduction Factor	Ka	1			
combination factor applied to internal pressures	$K_{C,e}$	0.8			
local pressure factor	Kı	1			
porous cladding reduction factor	Kp	1			
External Pressure Coefficient	C _{P,e}	-0.47			
Factored External Pressure Coefficient	$C_{P,e}$	-0.52			
aerodynamic shape factor	C _{fig,e}	-0.42			

Pressure	Р	-0.10	kPa
4.2 Roof Centre Half	Ŧ	0	
F	Т	2	m
Area Reduction Factor	Ka	1	
combination factor applied to nternal pressures	K _{C,e}	0.8	
ocal pressure factor	Kı	1	
porous cladding reduction factor	Kp	1	
External Pressure Coefficient	C _{P,e}	-0.94	
Factored External Pressure Coefficient	C _{P,e}	-1.04	
aerodynamic shape factor	C _{fig,e}	-0.83	
Pressure	Ρ	-0.20	kPa
1.2 Roof Centre Half			
ס	D	1	m
Area Reduction Factor	Ka	1	
combination factor applied to nternal pressures	K _{C,e}	0.8	
ocal pressure factor	Kı	1	
oorous cladding reduction factor	Kp	1	
External Pressure Coefficient	C _{P,e}	-0.64	
Factored External Pressure	C _{P,e}	-0.71	
	C.	0.57	
aerodynamic shape factor	C _{fig,e}	-0.57	
Pressure	Р	-0.14	kPa
	WIND	DIRECTION	2 (Paral
		Interne	al Pressu
Dpening Assumption			
	Mithaut	Dominant	Doning
	without	Dominant C	pening
nternal Pressure Coefficient		-0.3	
Without Dominant) MIN		-0.5	
nternal Pressure Coefficient Without Dominant) MAX		0.2	
nternal Pressure Coefficient With Dominant) MIN			
nternal Pressure Coefficient With Dominant) MAX			

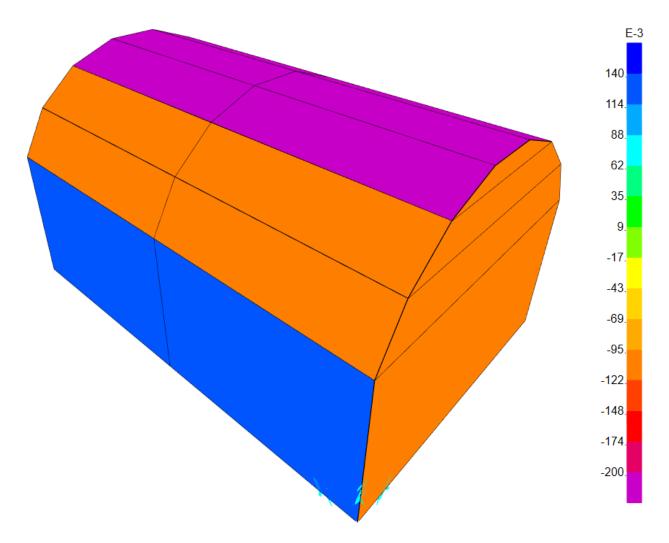
Ν				Cpi= N*Cpe	
Combination Factor	K _{C,i}	1			
Internal Pressure Coefficient MIN	C _{p,i}	-0.30			
Internal Pressure Coefficient MAX	C _{p,i}	0.20			
		Extern	al Pressu	re	
1. Windward Wall					
External Pressure Coefficient	C _{P,e}	0.7			
Area Reduction Factor	Ka	1			Table 5.4
combination factor applied to internal pressures	K _{C,e}	0.8			
local pressure factor	Kı	1			
porous cladding reduction factor	Kp	1			
aerodynamic shape factor	C _{fig,e}	0.56			
Wind Wall Pressure	Р	0.14	kPa		
Edge Column Force	F	0.27	kN/m		
Intermediate Column Force	F	0.55	kN/m		
2. Leeward Wall					
External Pressure Coefficient	C _{P,e}	-0.4			
Area Reduction Factor	Ka	1			Table 5.4
combination factor applied to internal pressures	K _{C,e}	0.8			
local pressure factor	Kı	1			
porous cladding reduction factor	Kp	1			
aerodynamic shape factor	Cfig,e	-0.32			
Lee Wall Pressure	Р	-0.08	kPa		
Edge Column Force	F	-0.64	kN/m		
Intermediate Column Force	F	-1.28	kN/m		
3. Side Wall					
Area Reduction Factor	Ka	1			Table 5.4
combination factor applied to internal pressures	K _{C,e}	0.8			
local pressure factor	Kı	1			
porous cladding reduction factor	Kp	1			
External Pressure Coefficient	C _{P,e}	-0.65		0 to 1h	
External Pressure Coefficient	C _{P,e}	-0.5		1h to 2h	
External Pressure Coefficient	C _{P,e}	-0.3		2h to 3h	
External Pressure Coefficient	C _{P,e}	-0.2		>3h	
aerodynamic shape factor	C _{fig,e}	-0.52		0 to 1h	
aerodynamic shape factor	C _{fig,e}	-0.4		1h to 2h	
aerodynamic shape factor	C _{fig,e}	-0.24		2h to 3h	

aerodynamic shape factor	C _{fig,e}	-0.16		>3h
Side Wall Pressure	Р	-0.13	kPa	0 to 1h
Side Wall Pressure	Р	-0.10	kPa	1h to 2h
Side Wall Pressure	Р	-0.06	kPa	
Side Wall Pressure	Р	-0.04	kPa	
4. Roof				α<10°
Area Reduction Factor	Ka	1		
combination factor applied to internal pressures	K _{C,e}	0.8		
local pressure factor	Kı	1		
porous cladding reduction factor	Kp	1		
External Pressure Coefficient MIN	$C_{P,e}$	-0.9		0 to 0.5h
External Pressure Coefficient MIN	C _{P,e}	-0.9		0.5 to 1h
External Pressure Coefficient MIN	C _{P,e}	-0.5		1h to 2h
External Pressure Coefficient MIN	C _{P,e}	-0.3		2h to 3h
External Pressure Coefficient MIN	$C_{P,e}$	-0.2		>3h
External Pressure Coefficient MAX	C _{P,e}	-0.4		0 to 0.5h
External Pressure Coefficient MAX	$C_{P,e}$	-0.4		0.5 to 1h
External Pressure Coefficient MAX	C _{P,e}	0		1h to 2h
External Pressure Coefficient MAX	$C_{P,e}$	0.1		2h to 3h
External Pressure Coefficient MAX	$C_{P,e}$	0.2		>3h
aerodynamic shape factor MIN	C _{fig,e}	-0.72		0 to 0.5h
aerodynamic shape factor MIN	$C_{\text{fig,e}}$	-0.72		0.5 to 1h
aerodynamic shape factor MIN	$C_{\text{fig,e}}$	-0.4		1h to 2h
aerodynamic shape factor MIN	C _{fig,e}	-0.24		2h to 3h
aerodynamic shape factor MIN	$C_{\text{fig},e}$	-0.16		>3h
aerodynamic shape factor MAX	C _{fig,e}	-0.32		0 to 0.5h
aerodynamic shape factor MAX	$C_{\text{fig,e}}$	-0.32		0.5 to 1h
aerodynamic shape factor MAX	$C_{\text{fig,e}}$	0		1h to 2h
aerodynamic shape factor MAX	C _{fig,e}	0.08		2h to 3h
aerodynamic shape factor MAX	$C_{\text{fig,e}}$	0.16		>3h
Pressure MIN	Р	-0.18	kPa	0 to 0.5h
Pressure MIN	Р	-0.18	kPa	0.5 to 1h

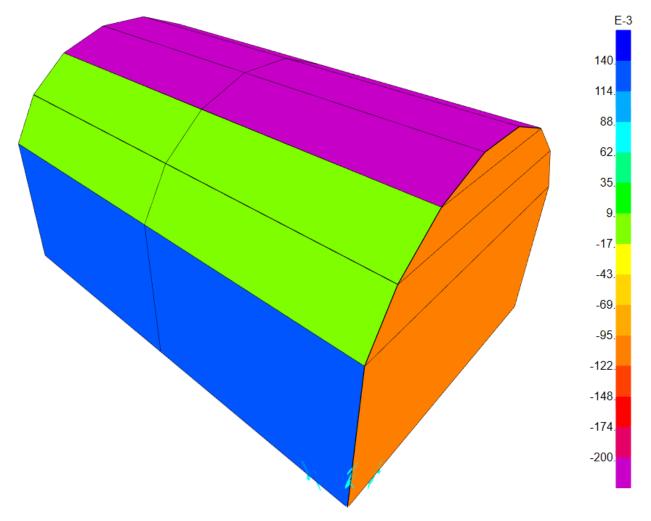
Prime Consulting Engineers Pty. Ltd.

Pressure MIN	Р	-0.10	kPa	1h to 2h	
Pressure MIN	Р	-0.06	kPa	2h to 3h	
Pressure MIN	Р	-0.04	kPa	>3h	
Pressure MAX	Р	-0.08	kPa	0 to 0.5h	
Pressure MAX	Р	-0.08	kPa	0.5 to 1h	
Pressure MAX	Р	0.00	kPa	1h to 2h	
Pressure MAX	Р	0.02	kPa	2h to 3h	
Pressure MAX	Р	0.04	kPa	>3h	

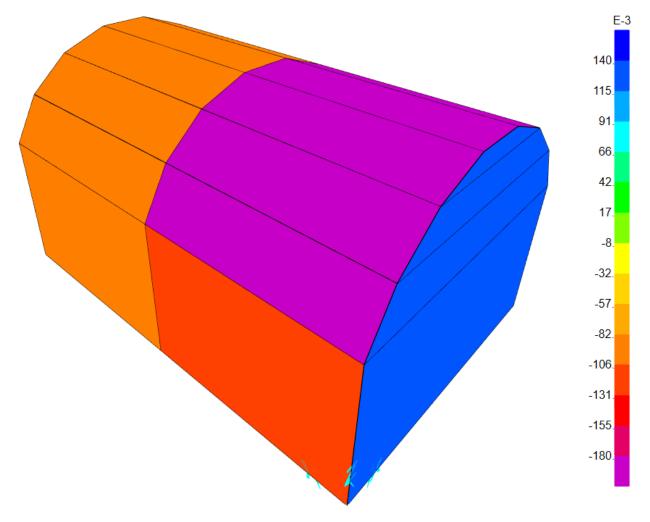
4.1.1 Summary Forces


WIND EXTERNAL PRESSURE									
		Wind Direction1 (Perpendicular to Length)	Wind Direc (Parallel to I						
	Windward	0.14	0.14						
	Leeward	-0.10	-0.08	}					
	0m - 2.7m	-0.13	-0.13						
Cidowall	2.7m - 5.4m	-0.10	-0.10						
Sidewall	5.4m - 8.1m	-0.06	-0.06	;					
	> 8.1m	-0.04	-0.04	Ļ					
			0m - 1.35m	-0.18	-0.08				
	Windward Quarter (U) 1m	-0.10	1.35m - 2.7m	-0.18	-0.08				
Roof	Centre Half (T) 2m	-0.20	2.7m - 5.4m	-0.10	0.00				
	Leeward Quarter (D) 1m	-0.14	5.4m - 8.1m	-0.06	0.02				
			>8.1m	-0.04	0.04				
	Wind Internal	Pressure (kPa)							
		-0.07 0.05	-0.07	0.	05				

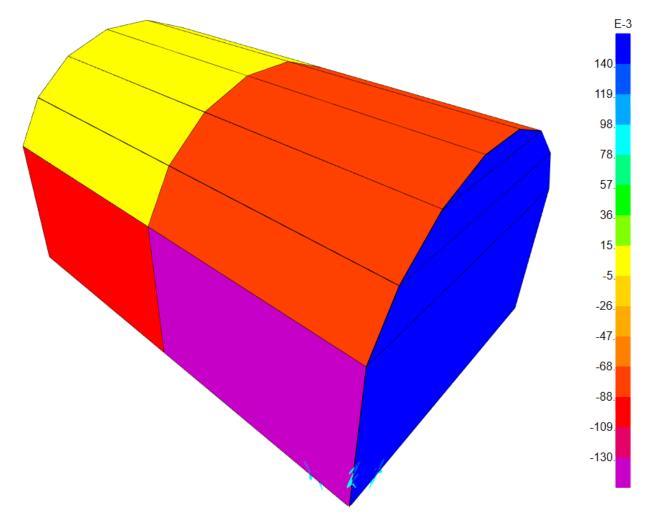
5 Load Diagrams


5.1 Wind Load

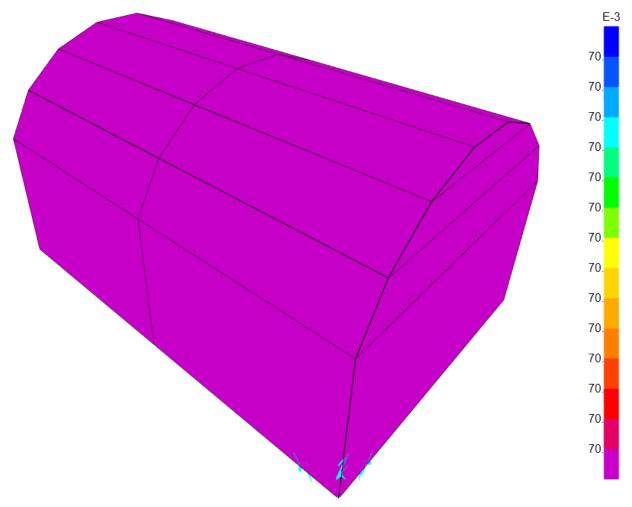
5.1.1 Wind Direction 1 (min)



5.1.2 Wind Direction 1 (max)

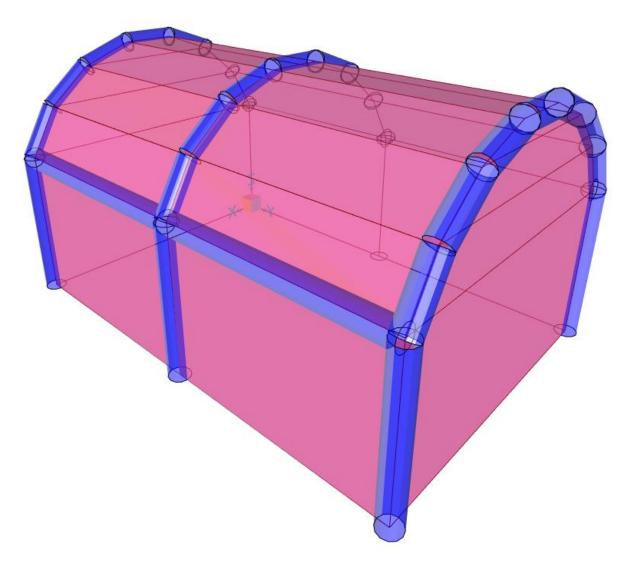


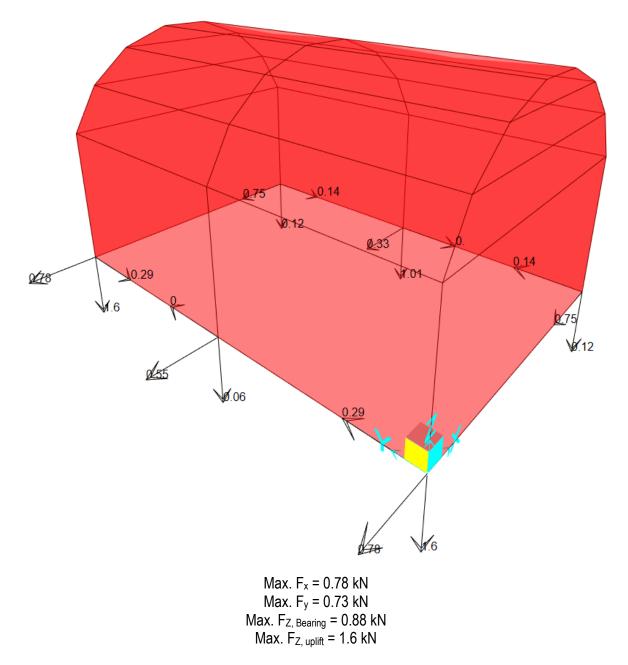
5.1.3 Wind Direction 2 (min)



5.1.4 Wind Direction 2 (max)






- 6 Analysis
- 6.1 3D model

6.2 Results

6.2.1 Maximum Reactions

7 Holding Down Requirements

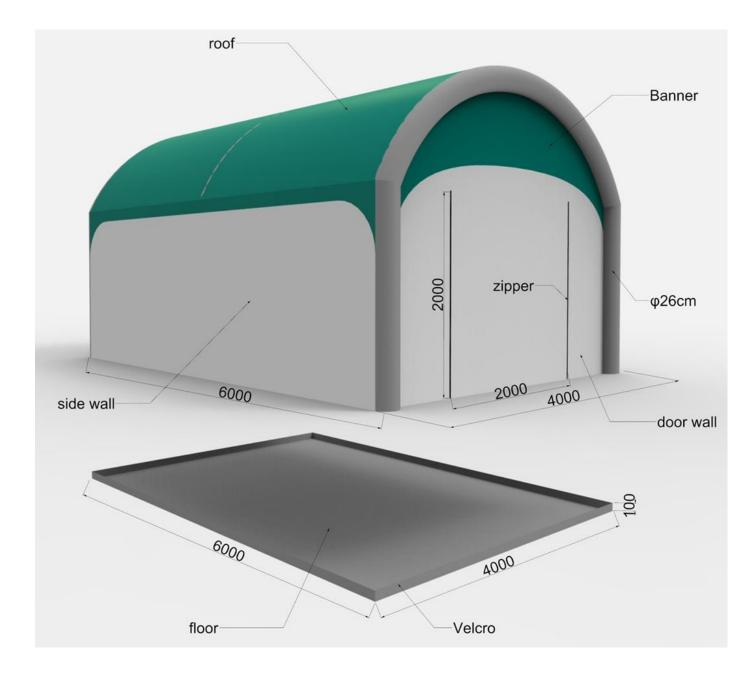
Refer table below for holding down weight requirements for various wind speeds

Wind Speed (km/hr)	Wind Speed (m/s)	Weight Per leg (kg)	Total Weigh for 6 legs (kg)
80	22.22	165	990
60	16.67	95	570
40	11.11	55	330

8 Summary and Recommendations

- The 4m x 6m Inflatable Marquee is required to be deflated for forecast winds in excess of 80, 60 & 40km/hr based on provided weights per leg as per Cl.7.
- For uplift due to 80, 60 & 40km/hr wind speeds, holding down weight per leg is required as tabulated in Cl. 7 and shown below.
- Design of fabric is by others.

Wind Speed (km/hr)	Wind Speed (m/s)	Weight Per leg (kg)	Total Weigh for 6 legs (kg)
80	22.22	165	990
60	16.67	95	570
40	11.11	55	330


Yours faithfully,

Prime Consulting Engineers Pty. Ltd.

Kevin Zia, BEng, Meng, MIEAust, CPENG NER

9 Appendix A – Detail Drawings

Size: 4m x 6m Height: 3.4 m Clearance: 19 m² Frame Profile: 260 mm Diameter Weight: 40kg

Size: 5m x 10m Height: 3.8m Clearance: 40m Frame Profile: 330 mm Diameter Weight: 60kg

Fabric: 400D PU Coated Polyester

Warranty: TPU Frame: 6 months Fabric: Polyester Plain & Printed 1 Year