Prime Consulting Engineers Pty. Ltd.

Design Report:

$4 m \times 4 m, 4 m \times 5 m \& 5 m \times 5 m$

Square Umbrella Structures

For
60km/hr Wind speed

Ref: R-23-696
Date: 17/11/2023
Amendment:-
Prepared by: AK
Checked by: KZ

CONTENTS

1 Introduction and Scope: 4
1.1 Project Description 4
1.2 References 4
1.3 Notation 5
2 Design Overview 5
2.1 Geometry Data 5
2.2 Assumptions \& Limitations 6
2.3 Exclusions 6
2.4 Design Parameters and Inputs 6
2.4.1 Load Cases 6
1.1.1 Load Combinations 6
3 Specifications 7
3.1 Material Properties 7
3.2 Buckling Constants 8
3.3 Member Sizes \& Section Properties 9
4 Wind Analysis 10
4.1 Wind calculations 10
4.1.1 Summary 12
4.2 Wind Load Diagrams 13
4.2.1 Wind Load Ultimate ($\mathrm{W}_{\text {min }}$) _ Opened Condition 13
4.2.2 Wind Load Ultimate ($\mathrm{W}_{\max }$) _ Opened Condition 14
4.2.3 Wind Load - Closed Condition 15
5 Analysis 16
5.1 Results 16
5.1.1 Maximum Bending Moment in Major Axis 16
5.1.2 Maximum Bending Moment in Minor Axis 17
5.1.3 Maximum Shear 18
5.1.4 Maximum Axial Force 19
5.1.5 Maximum Reactions - Opened 20
5.1.6 Maximum Reactions - Closed 21
6 Aluminium Member Design 22
7 Anchor Design 23
7.1 Permanent Installation 23
7.2 Temporary Installation 24
8 Summary and Recommendations 25
9 Appendix A - Aluminium Design Based on AS1664.1 26
9.1 Pole 27
9.2 Long Rib 1 31
9.3 Long Rib 2 35
9.4 Short Rib 1 40
9.5 Short Rib 2 44
10 Appendix B - Anchorage Design 49
11 Appendix C - Technical Data Sheet 50

Prime Consulting Engineers Pty. Ltd.
Email: info@primeengineers.com.au

1 Introduction and Scope:

The report and certification are the sole property of Prime Consulting Engineers Pty. Ltd.
Prime Consulting Engineers have been engaged by Extreme Marquees Pty. Ltd. to carry out a structural analysis of $5 \mathrm{~m} \times 5 \mathrm{~m}$ Square Umbrella Structures for $60 \mathrm{~km} / \mathrm{hr}$ wind speed. It should be noted that the outcome of our analysis is limited to the selected items as outlined in this report.

This report shall be read in conjunction with the documents listed in the references (Cl. 1.2)

1.1 Project Description

The report examines the effect of the peak gust wind that an equivalent moving average time of approximately $0.2 \mathrm{~S} 16.67 \mathrm{~m} / \mathrm{s}(\mathbf{6 0} \mathbf{~ k m} / \mathrm{hr})$ positioned for the worst effect on $5 \mathrm{~m} \times 5 \mathrm{~m}$ Square Umbrella Structures as the worst-case scenario. The relevant Australian Standards AS1170.0:2002 General principles, AS1170.1:2002 Permanent, imposed, and other actions and AS1170.2:2021 Wind actions are used. The design check is in accordance with AS1664.1 Aluminium Structures.

1.2 References

- The documents referred to in this report are as follows:
- Report on results produced through SAP2000 V24 software \& excel spreadsheets.
- The basic standards used in this report are as follows:
- AS 1170.0:2002 - Structural Design Actions (Part 0: General principles)
- AS 1170.1:2002 - Structural Design Actions (Part 1: Permanent, imposed, and other actions)
- AS 1170.2:2021 - Structural Design Actions (Part 2: Wind Actions)
- AS1664.1:1997 Aluminium Structures.
- Section Properties of Aluminium Section provided by the client.
- The program(s) used for this analysis are as follows:
- SAP2000 V24
- Microsoft Excel

1.3 Notation

AS/NZS	Australian Standard/New Zealand Standard
FEM/FEA	Finite Element Method/Finite Element Analysis
SLS	Serviceability Limit State
ULS	Ultimate Limit State

2 Design Overview

2.1 Geometry Data

	RD										SQ 	$\Phi 4 \mathrm{~m}$	$\Phi 5 \mathrm{~m}$	$\Phi 6 \mathrm{~m}$	$\Phi 7 \mathrm{~m}$	$4 \times 4 \mathrm{~m}$	$4 \times 5 \mathrm{~m}$	$5 \times 5 \mathrm{~m}$
a	50	50	50	50	50	50	50											
b	4350	4350	4350	4350	4350	4350	4350											
c	1100	1100	1100	1100	1100	1100	1100											
d	880	976	1190	1548	2815	3180	3490											
e	1990	2505	2980	3500	2030	$2030 / 2500$	2620											

Figure 1 Data sheet

2.2 Assumptions \& Limitations

- For forecast winds in excess of $\mathbf{6 0} \mathbf{k m} / \mathbf{h r}$, the umbrella structure should be folded.
- The structure is design for wind parameters as below:
- Wind Region A
- TC2
- $M_{s}, M_{t} \& M_{d}=1$
- Shall the site conditions/wind parameters exceed prescribed design wind actions (refer to Cl.4), Prime Consulting Engineers Pty. Ltd. should be informed to determine appropriate wind classifications and amend computations accordingly.
- It is assumed that the fabric weighs $490 \mathrm{gr} / \mathrm{m}^{2}$.
- Aluminium alloy is to be 6061-T6.

2.3 Exclusions

- Design of fabric.
- Wind actions due to tropical or severe tropical cyclonic areas.
- Snow and ice loads.
- Footing design.

2.4 Design Parameters and Inputs

2.4.1 Load Cases

1. G
2. Wu
3. Ws

Permanent actions (Dead load)
Ultimate wind action (ULS)
Serviceability wind action (SLS)

1.1.1 Load Combinations

Strength (ULS):

1. 1.35G Permanent action only
2. $0.9 \mathrm{G}+\mathrm{W}_{\mathrm{u}} \quad$ Permanent and wind actions
3. $1.2 \mathrm{G}+\mathrm{W}_{\mathrm{u}} \quad$ Permanent and wind actions

Serviceability (SLS):

1. $\mathrm{G}+\mathrm{W}_{\mathrm{s}}$

Wind service actions

3 Specifications

3.1 Material Properties

Material Properties										
6061-T6	$\mathrm{F}_{\text {tu }}$	$\mathrm{F}_{\text {ty }}$	$\mathrm{F}_{\text {cy }}$	$\mathrm{F}_{\text {su }}$	$\mathrm{F}_{\text {sy }}$	Fbu	Fby	E	k_{t}	k_{c}
	262	241	241	165	138	551	386	70000	1	1.12

3.2 Buckling Constants

TABLE 3.3(D) BUCKLING CONSTANTS FOR ALLOY 6061-T6						
Type of member and stress	Intercept, MPa		Slope, MPa		Intersection	
Compression in columns and beam flanges	B_{c}	271.04	D_{c}	1.69	C_{c}	65.89
Compression in flat plates	B_{p}	310.11	Dp	2.06	C_{p}	61.60
Compression in round tubes under axial end load	B_{t}	297.39	D_{t}	10.70	C_{t}	*
Compressive bending stress in rectangular bars	Bbr	459.89	Dbr	4.57	$\mathrm{Cbr}_{\mathrm{br}}$	67.16
Compressive bending stress in round tubes	B_{tb}	653.34	$\mathrm{D}_{\text {tb }}$	50.95	$\mathrm{C}_{\text {tb }}$	78.23
Shear stress in flat plates	B_{s}	178.29	$\mathrm{D}_{\text {s }}$	0.90	C_{s}	81.24
Ultimate strength of flat plates in compression	k_{1}	0.35	k_{2}	2.27		
Ultimate strength of flat plates in bending	k_{1}	0.5	k_{2}	2.04		

${ }^{*} C_{t}$ shall be determined using a plot of curves of limit state stress based on elastic and inelastic buckling or by trial and error solution

Prime Consulting Engineers Pty. Ltd.
Email: info@primeengineers.com.au

3.3 Member Sizes \& Section Properties

MEMBER(S)	Section	b	d	t	y_{c}	Ag_{g}	Z_{x}	z_{y}	S_{x}	Sy	I_{x}	1 l	J	r_{x}	r_{y}
		mm	mm	mm	mm	$m m^{2}$	mm^{3}	mm^{3}	mm^{3}	mm^{3}	$m m^{4}$	mm^{4}	mm^{4}	mm	mm
Pole	$105 \times 105 \times 3.9$	105	105	3.9	52.5	1577.2	51252.3	51252.3	59823.7	59823.7	2690745.4	2690745.4	4030120.9	41.3	41.3
Long Rib1	$\begin{gathered} 40 \times 20 \times 2+ \\ 35 \times 30 \times 3 \end{gathered}$	20	75	2	37.5	364.0	5035.0	3578.6	7191.7	4786.3	180869.7	62626.1	38065.7	20.4	12.0
Long Rib2	$\begin{gathered} 40 \times 20 \times 2+ \\ 35 \times 30 \times 3 \end{gathered}$	20	75	2	37.5	364.0	5035.0	3578.6	7191.7	4786.3	180869.7	62626.1	38065.7	20.4	12.0
Short Rib 1	30x20x2	20	30	2	15.0	184.0	1437.7	1112.5	1796.0	1336.0	21565.3	11125.3	22088.3	10.8	7.8
Short Rib 2	30×20x2	20	30	2	15.0	184.0	1437.7	1112.5	1796.0	1336.0	21565.3	11125.3	22088.3	10.8	7.8

Prime Consulting Engineers Pty. Ltd.
Email: info@primeengineers.com.au

4 Wind Analysis

4.1 Wind calculations

Project: EXTREME MARUQEES

Prime Consulting Engineers Pty. Dảte: 16/11/2023
Designer: AK

Prime Consulting Engineers Pty. Ltd.
Email: info@primeengineers.com.au

ρ air dynamic response factor Wind Pressure	$\begin{gathered} \rho \\ \mathrm{C}_{\mathrm{dyn}} \\ \rho^{*} \mathrm{C}_{\mathrm{fig}} \end{gathered}$	$\begin{gathered} 1.2 \\ 1 \\ \mathbf{0 . 1 3 8} \end{gathered}$	$\begin{aligned} & \mathrm{Kg} / \mathrm{m}^{3} \\ & \mathrm{Kg} / \mathrm{m}^{2} \end{aligned}$	$\rho=0.5 \rho_{\text {air }}{ }^{*}\left(V_{\text {des }, \beta}\right)^{2 *} C_{\text {fig }}{ }^{*} C_{\text {dyn }}$	2.4 (AS1170.2)
WIND DIRECTION 1 ($\theta=0$) External Pressure					
1. Free Roof Area Reduction Factor local pressure factor porous cladding reduction factor External Pressure Coefficient MIN External Pressure Coefficient MAX External Pressure Coefficient MIN External Pressure Coefficient MAX aerodynamic shape factor MIN aerodynamic shape factor MAX aerodynamic shape factor MIN aerodynamic shape factor MAX Pressure Windward MIN Pressure Windward MAX Pressure Leeward MIN Pressure Leeward MAX	K_{a} K_{I} K_{p} $C_{P, w}$ $C_{P, w}$ $C_{P, I}$ $C_{P, I}$ $C_{f i g, w}$ $C_{f i g, w}$ $C_{f i g, l}$ $C_{f i g, l}$ P P	1 1 1.00 -0.3 0.64 -0.62 0 -0.30 0.64 -0.62 0.00 -0.04 0.09 -0.09 0.00	kPa kPa kPa kPa	$\alpha=0^{\circ}$	D7
WIND DIRECTION 2 ($\theta=90$) External Pressure					
4. Free Roof Area Reduction Factor local pressure factor porous cladding reduction factor External Pressure Coefficient MIN External Pressure Coefficient MAX	K_{a} KI K_{p} $\mathrm{C}_{\mathrm{P}, \mathrm{w}}$ $\mathrm{C}_{\mathrm{P}, \mathrm{w}}$	$\begin{gathered} 1 \\ 1 \\ 1.00 \\ -0.3 \\ 0.4 \end{gathered}$		$\alpha=180^{\circ}$	D7

4.1.1 Summary

WIND EXTERNAL PRESSURE	Direction1		Direction2	
	Min (Kpa)	Max (Kpa)	Min (Kpa)	Max (Kpa)
Windward	-0.041	0.088	-0.041	0.055
Leeward	-0.086	0.000	-0.055	0.000

4.2 Wind Load Diagrams

4.2.1 Wind Load Ultimate ($\mathbf{W}_{\text {min }}$) _ Opened Condition

Figure 2 Wind Min

4.2.2 Wind Load Ultimate $\left(\mathbf{W}_{\text {max }}\right)$ _ Opened Condition

Figure 3 Wind Max

4.2.3 Wind Load - Closed Condition

Figure 4 Wind_Closed

5 Analysis

5.1 Results

5.1.1 Maximum Bending Moment in Major Axis

Figure 5 Maximum Bending Moment - Major

5.1.2 Maximum Bending Moment in Minor Axis

Figure 6: Maximum Bending Moment - Minor

5.1.3 Maximum Shear

Figure 7 Maximum Shear

5.1.4 Maximum Axial Force

Figure 8 Maximum Axial Force

5.1.5 Maximum Reactions - Opened

Figure 9 Maximum Reaction

$$
\begin{gathered}
\mathrm{Fx}=0.73 \mathrm{kN} \\
\mathrm{Fyy}^{=}=0.01 \mathrm{kN} \\
\mathrm{~F}_{\mathrm{z} \text { (up lift) }}=0.99 \mathrm{kN} \\
\mathrm{~F}_{\mathrm{z} \text { (Bearing) }}=1.56 \mathrm{kN} \\
\mathrm{M}_{\mathrm{y}}=1.81 \mathrm{kN}-\mathrm{m}
\end{gathered}
$$

5.1.6 Maximum Reactions - Closed

Figure 10 Maximum Reaction

$$
\begin{array}{rl}
\mathrm{Fx} & =0.98 \mathrm{kN} \\
\mathrm{Fy} & =0.01 \mathrm{kN} \\
\mathrm{~F}_{\mathrm{z}} & =0.22 \mathrm{kN} \\
\mathrm{M}_{\mathrm{y}} & 2.13 \mathrm{kN}-\mathrm{m}
\end{array}
$$

Prime Consulting Engineers Pty. Ltd.
Email: info@primeengineers.com.au

6 Aluminium Member Design

All Aluminium members passed. The summary results are tabulated below. Refer to Appendix 'A' for details.

MEMBER(S)	Section	b	d	t	Vx	Vy	P (Axial)	Mx	My
		mm	mm	mm	kN	kN	kN	kN.m	kN.m
Pole	$105 \times 105 \times 3.9$	105	105	3.9	0.73	-9.8E-14	-1.56	-1.81	-9.397E-14
Long Rib1	$40 \times 20 \times 2+35 \times 30 \times 3$	20	75	2	-0.25	0.015	0.009948	-0.426	0.0242
Long Rib2	$40 \times 20 \times 2+35 \times 30 \times 3$	20	75	2	-0.32	1.9E-11	0.011	-0.3929	$3.69 \mathrm{E}-11$
Short Rib 1	$30 \times 20 \times 2$	20	30	2	0.136	0.00851	-0.967	-0.1121	0.0013
Short Rib 2	30X20X2	20	30	2	0.136	-9.8E-12	-0.967	-0.1048	$1.645 \mathrm{E}-12$
0	$100 \times 50 \times 5$	50	100	5	0	0	0	0	0
0	$100 \times 50 \times 5$	50	100	5	0	0	0	0	0

7 Anchor Design

7.1 Permanent Installation

$600 \times 600 \times 10$ Base Plate with Mechanical Anchors (bolted to min. 200 mm thick concrete slab 32 mPa) Use 4 off TRUBOLT XTREM M10x90/10 or equivalent.

Refer Appendix ' B ' for details.

Action $[\mathrm{kN}] /[\mathrm{kNm}]$	Action type	N_{Ed}	$\mathrm{V}_{\mathrm{Ed}, \mathrm{X}}$	$\mathrm{V}_{\mathrm{Ed}, \mathrm{Y}}$	$\mathrm{M}_{\mathrm{Ed}, \mathrm{Z}}$	$\mathrm{M}_{\mathrm{Ed}, \mathrm{X}}$	$\mathrm{M}_{\mathrm{Ed}, \mathrm{Y}}$
Combination 1	standard	0.22	0.98	0	0	0	2.13

7.2 Temporary Installation

Maximum uplift force at toe: 0.99 kN
Self-weight of the base plate: 90 kg
Thus, required additional weight to counteract uplift forces due to design wind speed $(60 \mathrm{~km} / \mathrm{hr})=175 \mathrm{~kg}$

8 Summary and Recommendations

- The $5 \mathrm{~m} \times 5 \mathrm{~m}$ Square Umbrella Structures as specified is capable of withstanding $60 \mathrm{~m} / \mathrm{s}$ Wind Loads when open and $140.4 \mathrm{~km} / \mathrm{hr}$ when folded.
- For forecast winds in excess of $\mathbf{6 0 k m} / \mathbf{h r}$ the umbrella structure should be completely folded. The umbrella with temporary anchorage system must be stored in an enclosed building however the umbrella with permanent anchorage system can remain folded on site when forecast wind not exceeding 140.4 km/hr.
- Refer to Cl .7 for the required anchorage system.

Yours faithfully,
Prime Consulting Engineers Pty. Ltd.
Bijaya Giri, MEng, MIEAust, CPEng, NER, APEC, IntPE (Aus), PE Vic

$9 \quad$ Appendix A - Aluminium Design Based on AS1664.1

Prime Consulting Engineers Pty. Ltd.
Email: info@primeengineers.com.au

9.1 Pole

Prime Cansulting Engineers Pty. Ltd

Stress from out-of-plane bending	$\mathrm{f}_{\text {by }}$	$=$	$\begin{gathered} M_{y} / Z_{y} \\ 0.00 \end{gathered}$	MPa	compression	
Tension						
3.4.3 Tension in rectangular tube	$\phi F\llcorner$ ϕF_{L}	$\begin{gathered} = \\ \text { OR } \end{gathered}$ $=$	228.95 222.70	MPa MPa		
COMPRESSION						
Unsupported length of member	L	=	4350	mm		
Effective length factor	k	=	1.00			
Radius of gyration about buckling axis (Y)	ry	=	41.30	mm		
Radius of gyration about buckling axis (X)	r_{x}	=	41.30	mm		
Slenderness ratio	kLb/ry	=	78.68			
Slenderness ratio	kL/rx	$=$	105.32			
Slenderness parameter	λ	$=$	1.967			
	Dc^{*}	=	90.3			
	$\mathrm{S}_{1}{ }^{*}$	=	0.33			
	$\mathrm{S}_{2}{ }^{*}$	$=$	1.23			
	$\phi_{c c}$	$=$	0.855			
Factored limit state stress	ϕF_{L}	$=$	53.28	MPa		
2. Sections not subject to torsional or torsional-flexural buckling						3.4.8.2
Largest slenderness ratio for flexural buckling	kL/r	=	105.32			
3.4.10 Uniform compression in components of columns, gross section flat plates						
1. Uniform compression in components of columns, gross section - flat plates with both edges supported						3.4.10.1
	k_{1}	$=$	0.35			T3.3(D)
Max. distance between toes of fillets of supporting elements for plate	b^{\prime}	=	97.2			
for plate $\mathrm{t}=3.9 \mathrm{~mm}$						
Slenderness	b/t	=	24.923077			
Limit 1	S_{1}	=	12.34			
Limit 2	S_{2}	$=$	32.87			

Prime Consulting Engineers Pty. Ltd.
Email: info@primeengineers.com.au

Factored limit state stress	ϕF_{L}	$=$	193.63	MPa		
Most adverse compressive limit state stress	Fa	=	53.28	MPa		
Most adverse tensile limit state stress	$\mathrm{Fa}_{\text {a }}$	=	222.70	MPa		
Most adverse compressive \& Tensile capacity factor	$\mathrm{f}_{\mathrm{a}} / \mathrm{F}_{\mathrm{a}}$	=	0.02		PASS	
BENDING - IN-PLANE						
3.4.15 Compression in beams, extreme fibre, gross section rectangular tubes, box sections						
Unbraced length for bending	Lb	$=$	3250	mm		
Second moment of area (weak axis)	1 l		$2.69 \mathrm{E}+06$	mm^{4}		
Torsion modulus	J	=	4.03E+06	mm^{3}		
Elastic section modulus	Z	$=$	51252.293	mm^{3}		
Slenderness	S	$=$	101.17			
Limit 1	S_{1}	=	0.39			
Limit 2	S_{2}	$=$	1695.86			
Factored limit state stress	ϕF_{L}	$=$	207.31	MPa		3.4.15(2)
3.4.17 Compression in components of beams (component under uniform compression), gross section - flat plates with both edges supported						
		$=$	0.5			T3.3(D)
		$=$	2.04			T3.3(D)
Max. distance between toes of fillets of supporting elements for plate		=	97.2	mm		
			$\begin{gathered} 3.9 \\ 24.923077 \end{gathered}$	mm		
Limit 1	S_{1}	=	12.34			
Limit 2	S_{2}	=	46.95			
Factored limit state stress	¢ F_{L}	=	193.63	MPa		
Most adverse in-plane bending limit state stress			193.63	MPa		
Most adverse in-plane bending capacity factor	$\mathrm{fbx}^{\text {/ }} / \mathrm{Fbx}$	=	0.12		PASS	
BENDING - OUT-OF-PLANE						

NOTE: Limit state stresses, ϕF_{L} are the same for out-of-plane bending (doubly symmetric section)						
Factored limit state stress	¢ $F_{\text {L }}$	$=$	193.63	MPa		
Most adverse out-of-plane bending limit state stress	Fby		193.63	MPa		
Most adverse out-of-plane bending capacity factor	$\mathrm{f}_{\text {by }} / \mathrm{F}_{\text {by }}$	=	0.00		PASS	
COMBINED ACTIONS						
4.1.1 Combined compression and bending						... 4.1.1 (2)
	F_{a}	=	53.28	MPa		... 3.4.8
	Fao	=	193.63	MPa		... 3.4.10
	Fbx	=	193.63	MPa		... 3.4.17
	Fby	=	193.63	MPa		... 3.4.17
	$\mathrm{fa}_{\mathrm{a}} / \mathrm{Fa}$	$=$	0.017			
Check:	$\mathrm{f}_{\mathrm{a}} / \mathrm{F}_{\mathrm{a}}+\mathrm{f}_{\mathrm{b} \times}$	$\mathrm{F}_{\mathrm{bx}}+$	by/ $F_{\text {by }} \leq 1.0$			$\begin{array}{r} \ldots 4.1 .1 \\ \\ (3) \end{array}$
	0.14	\leq	1.0		PASS	
SHEAR						
3.4.24 Shear in webs (Major Axis)						... 4.1.1 (2)
Clear web height	h	=	97.2	mm		
	t	=	3.9	mm		
Slenderness	h/t	=	24.923077			
Limit 1	S_{1}	=	29.01			
Limit 2 S2 $\mathrm{S}_{2} 59.31$						
Factored limit state stress	ϕF_{L}	=	131.10	MPa		
Stress From Shear force	f_{sx}	=	V/Aw			
			0.19	MPa		
3.4.25 Shear in webs (Minor Axis)						
Clear web height	b	=	97.2	mm		
	t	=	3.9	mm		
Slenderness b/t = 24.923077						
Factored limit state stress Stress From Shear force	ϕF_{L}	=	131.10	MPa		
	$\mathrm{f}_{\text {sy }}$	$=$	$\mathrm{V} / \mathrm{A}_{\mathrm{w}}$			
			0.00	MPa		

9.2 Long Rib 1

Job no. 23-696-1 Date: 17/11/2023
Prime Consulting Engineers Pty. Lto

NAME	SYMBOL		VALUE	UNIT	NOTES	REF
40x20x2+35x30x3	Long Rib1					
Alloy and temper	6061-T6					AS1664.1
Tension	Ftu	=	262	MPa	Ultimate	T3.3(A)
Tension	Fty	=	241	MPa	Yield	
Compression	Fcy	=	241	MPa		
Shear	Fsu	=	165	MPa	Ultimate	
Shear	$\mathrm{F}_{\text {sy }}$	=	138	MPa	Yield	
Bearing	Fbu	=	551	MPa	Ultimate	
	Fby	=	386	MPa	Yield	
Modulus of elasticity	E	=	70000	MPa	Compressiv e	
						T3.4(B)
	$\mathrm{k}_{\text {c }}$	$=$	1			
FEM ANALYSIS RES						
Axial force	$\begin{aligned} & P \\ & P \end{aligned}$	$=$ $=$	$\begin{gathered} 0 \\ 0.009948 \end{gathered}$	$\begin{aligned} & \mathrm{kN} \\ & \mathrm{kN} \end{aligned}$	compression Tension	

In plane moment Out of plane moment	$\begin{aligned} & M_{x} \\ & M_{y} \end{aligned}$	$\begin{aligned} & = \\ & = \end{aligned}$	$\begin{gathered} 0.426 \\ 0.0242 \end{gathered}$	kNm kNm		
DESIGN STRESSES						
Gross cross section area In-plane elastic section modulus Out-of-plane elastic section mod. Stress from axial force	A_{g}	=	364	mm^{2}		
	Z_{x}	=	5035	mm^{3}		
	Z_{y}	=	3578.6	mm^{3}		
	f_{a}	=	P/Ag			
		=		$\begin{aligned} & \mathrm{MPa} \\ & \mathrm{MPa} \end{aligned}$	compression Tension	
Stress from in-plane bending	f_{bx}	$\begin{aligned} & = \\ & = \end{aligned}$	$\begin{aligned} & M_{x} / Z_{x} \\ & 84.61 \end{aligned}$	MPa	compression	
Stress from out-of-plane bending	$\mathrm{f}_{\text {by }}$	$\begin{aligned} & = \\ & = \end{aligned}$	$\begin{gathered} M_{y} / Z_{y} \\ 6.76 \end{gathered}$	MPa	compression	
Tension						
3.4.3 Tension in rectangular tubes						
	ϕF_{L}	$\begin{aligned} & = \\ & \mathbf{O} \\ & \mathbf{R} \end{aligned}$	228.95	MPa		
	ϕF_{L}	$=$	222.70	MPa		
COMPRESSION						
3.4.8 Compression in columns, axial, gross section 1. General						... 3.4.8.1
Unsupported length of member	L	$=$	3700	mm		
Effective length factor	k	=	1.00			
Radius of gyration about buckling axis (Y)	r_{y}	=	12.00	mm		
Radius of gyration about buckling axis (X)	r_{x}	=	20.40	mm		
Slenderness ratio	kLb/ry	=	232.00			
Slenderness ratio	kL/rx	=	181.37			
Slenderness parameter	λ	=	4.33			
	Dc^{*}	=	90.3			
	$\mathrm{S}_{1}{ }^{*}$	=	0.33			
	$\mathrm{S}_{2}{ }^{*}$	=	1.23			
	ϕ cc	=	0.950			
Factored limit state stress	ϕF_{L}	$=$	12.19	MPa		
2. Sections not subject to torsional or torsional-flexural buckling						... 3.4.8.2

Largest slenderness ratio for flexural buckling	kL/r	=	232.00			$\begin{aligned} & 3.4 .10 .1 \\ & \text { T3.3(D) } \end{aligned}$
3.4.10 Uniform compression in components of columns, gross section - flat plates 1. Uniform compression in components of columns, gross section - flat plates with both edges supported						
	k_{1}	$=$	0.35			
Max. distance between toes of fillets of supporting elements for plate	b^{\prime}	=	16			
	t	=	2	mm		
Slenderness	b/t	=	8			
Limit 1	S_{1}	=	12.34			
Limit 2	S_{2}	=	32.87			
Factored limit state stress	ϕF_{L}	=	228.95	MPa		
Most adverse compressive limit state stress	$\mathrm{F}_{\text {a }}$	=	12.19	MPa		
Most adverse tensile limit state stress	$\mathrm{Fa}_{\text {a }}$	=	222.70	MPa		
Most adverse compressive \& Tensile capacity factor	$\mathrm{f}_{\mathrm{a}} / \mathrm{F}_{\mathrm{a}}$	=	0.00		PASS	
BENDING - IN-PLANE						
3.4.15 Compression in beams, extreme fibre, gross section rectangular tubes, box sections						
Unbraced length for bending	Lb	$=$	2784	mm		
Second moment of area (weak axis)	ly	$=$	$6.26 \mathrm{E}+04$	mm ${ }^{4}$		
Torsion modulus	J	$=$	$3.81 \mathrm{E}+04$	mm^{3}		
Elastic section modulus	Z	$=$	5035	mm^{3}		
Slenderness	S	$=$	574.19			
Limit 1	S_{1}	=	0.39			
Limit 2		$=$	1695.86			
Factored limit state stress		$=$	175.42	MPa		3.4.15(2)
3.4.17 Compression in components of beams (component under uniform compression), gross section - flat plates with both edges supported						
	k_{1}	$=$	0.5			T3.3(D)
	k_{2}	=	2.04			T3.3(D)

Prime Consulting Engineers Pty. Ltd.
Email: info@primeengineers.com.au

Max. distance between toes of fillets of supporting elements for plate	b^{\prime}	=	16	mm		
	t	=	2	mm		
Slenderness	b/t	=	8			
Limit 1	S_{1}	=	12.34			
Limit 2	S2	=	46.95			
Factored limit state stress	ϕF_{L}	$=$	228.95	MPa		
Most adverse in-plane bending limit state stress	Fbx	$=$	175.42	MPa		
Most adverse in-plane bending capacity factor	$\mathrm{fbx}^{\text {/ }}$ bx	=	0.48		PASS	
BENDING - OUT-OF-PLANE						
NOTE: Limit state stresses, ϕF_{L} (doubly symmetric section)	are the sam	for out	-of-plane	nding		
Factored limit state stress	ϕF_{L}	$=$	175.42	MPa		
Most adverse out-of-plane bending limit state stress			175.42	MPa		
Most adverse out-of-plane bending capacity factor		=	0.04		PASS	
COMBINED ACTIONS						
4.1.1 Combined compression and	d bending					... 4.1.1(2)
	Fa_{a}	$=$	12.19	MPa		... 3.4.8
	$\mathrm{Fao}_{\text {a }}$	=	228.95	MPa		... 3.4.10
	Fbx	=	175.42	MPa		... 3.4.17
	Fby	=	175.42	MPa		... 3.4.17
	$\mathrm{fa}_{\mathrm{a}} / \mathrm{Fa}_{\mathrm{a}}$	$=$	0.000			
Check:	$\mathrm{f}_{\mathrm{a}} / \mathrm{F}_{\mathrm{a}}+\mathrm{f}_{\mathrm{b}} / \mathrm{F}$		by ≤ 1.0			$\begin{array}{r} \text {... 4.1.1 } \\ \text { (3) } \end{array}$
	0.52	\leq	1.0		PASS	
SHEAR						
3.4.24 Shear in webs (Major Axis)						... 4.1.1(2)
Clear web height	h	=	71	mm		
				mm		
Slenderness	h/t	$=$	35.5			

9.3 Long Rib 2

Prime Consulting Engineers Pty. Ltd

Job no. 23-696-1 Date: 17/11/2023

NAME	SYMBOL		VALUE	UNIT	NOTES	REF
40x20x2+35x30x3	Long Rib2 6061-T6				Ultimate Yield	
Alloy and temper					AS1664.1	
Tension	$\mathrm{F}_{\text {tu }}$	=	262	MPa		T3.3(A)
Tension	Fty		241	MPa		
Compression	Fcy	=	241	MPa		

Shear	$\mathrm{F}_{\text {su }}$	$=$		MPa	Ultimate	T3.4(B)
	$\mathrm{F}_{\text {sy }}$	=	138	MPa	Yield	
Bearing	$\mathrm{F}_{\text {bu }}$	=	551	MPa	Ultimate	
	$\mathrm{F}_{\text {by }}$	=	386	MPa	Yield	
Modulus of elasticity	E	$=$	70000	MPa	Compressive	
	$\mathrm{kt}_{\text {t }}$	=	1			
	k_{c}	=	1			
FEM ANALYSIS RESULTS						
Axial force	P	=	0	kN	compression Tension	
	P	=	0.011	kN		
In plane moment	Mx	=	0.3929	kNm		
Out of plane moment	My		3.69E-11	kNm		
DESIGN STRESSES						
Gross cross section area In-plane elastic section modulus Out-of-plane elastic section mod.	Ag_{g}	=	364	mm^{2}	compression Tension	
	$\mathrm{Z}_{\text {x }}$		5035	mm^{3}		
	Z_{y}	$=$	3578.6	mm^{3}		
Stress from axial force	f_{a}	=	P/Ag			
		=		$\begin{aligned} & \mathrm{MPa} \\ & \mathrm{MPa} \end{aligned}$		
Stress from in-plane bending	f_{b}	=	M_{x} / Z_{x}			
		=	78.03	MPa	compression	
Stress from out-of-plane bending	$\mathrm{f}_{\text {by }}$	$=$	$\begin{gathered} M_{y} / Z_{y} \\ 0.00 \end{gathered}$	MPa	compression	
Tension						
3.4.3 Tension in rectangular tubes						
		$\begin{gathered} = \\ \text { OR } \end{gathered}$	228.95			
		=	222.70	MPa		
COMPRESSION						
3.4.8 Compression in columns, axial, gross section 1. General						... 3.4.8.1
Unsupported length of member	L	$=$	2731	mm		
Effective length factor	k	=	1.00			

Radius of gyration about buckling axis (Y)	ry	=	12.00	mm		
Radius of gyration about buckling axis (X)	r_{x}	=	20.40	mm		
Slenderness ratio	kLb/ry	=	154.42			
Slenderness ratio	kL/rx	$=$	133.87			
Slenderness parameter	λ	=	2.88			
	Dc^{*}	=	90.3			
	$\mathrm{S}_{1}{ }^{*}$	=	0.33			
	$\mathrm{S}_{2}{ }^{*}$	=	1.23			
	$\phi_{c c}$	=	0.950			
Factored limit state stress	ϕF_{L}	$=$	27.53	MPa		
2. Sections not subject to torsiona	or torsio	I-flex	ral bucklin			... 3.4.8.2
Largest slenderness ratio for flexural buckling	kL / r	$=$	154.42			
3.4.10 Uniform compression in co flat plates	mponents		nns, gross	section -		
1. Uniform compression in compo plates with both edges supported	nents of		gross sec	ion - flat		3.4.10.1
	k_{1}	=	0.35			T3.3(D)
Max. distance between toes of fillets of supporting elements for plate	b^{\prime}	=	16			
	t	=	2	mm		
Slenderness	b/t	$=$	8			
Limit 1	S_{1}	$=$	12.34			
Limit 2	S2	=	32.87			
Factored limit state stress	ϕF_{L}	$=$	228.95	MPa		
Most adverse compressive limit state stress	$\mathrm{Fa}_{\text {a }}$	=	27.53	MPa		
Most adverse tensile limit state stress	F_{a}	=	222.70	MPa		
Most adverse compressive \& Tensile capacity factor	$\mathrm{fa}_{\mathrm{a}} / \mathrm{Fa}_{\text {a }}$	=	0.00		PASS	
BENDING - IN-PLANE						
3.4.15 Compression in beams, ex tubes, box sections	reme fibre	gros	section re	tangular		

Prime Consulting Engineers Pty. Ltd.
Email: info@primeengineers.com.au

9.4 Short Rib 1

Prime Consulting Engineers Pty. Ltd

Job no. 23-696-1 Date: 17/11/2023

NAME	SYMBOL		VALUE	UNIT	NOTES	REF
30X20X2 Alloy and temper	Short Rib 1 6061-T6					AS1664.1
Tension	$\begin{aligned} & \mathrm{F}_{\text {tu }} \\ & \mathrm{F}_{\text {ty }} \end{aligned}$	=	$\begin{aligned} & 262 \\ & 241 \end{aligned}$	MPa MPa	Ultimate Yield	T3.3(A)
Compression	$\mathrm{F}_{\text {cy }}$	=	241	MPa		
Shear	$\mathrm{F}_{\text {su }}$	=	165	MPa	Ultimate	
	$\mathrm{F}_{\text {sy }}$	=	138	MPa	Yield	
Bearing		$=$		MPa		
Bearing	Fby	=	386	MPa	Yield	
Modulus of elasticity	E	=	70000	MPa	Compressiv e	
	k_{t} k_{c}	$\begin{aligned} & = \\ & = \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$			T3.4(B)
FEM ANALYSIS RESULTS						
Axial force In plane moment Out of plane moment	P P M_{x} M_{y}	$=$ $=$ $=$ $=$	$\begin{gathered} 0.967 \\ 0 \\ 0.1121 \\ 0.0013 \end{gathered}$	kN kN kNm kNm	compression Tension	
DESIGN STRESSES						
Gross cross section area In-plane elastic section modulus Out-of-plane elastic section mod.	Ag Z_{x} Z_{y}	$=$	$\begin{gathered} 184 \\ 1437.6889 \\ \\ 1112.5333 \end{gathered}$	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{3} \\ & \mathrm{~mm}^{3} \end{aligned}$		

Max. distance between toes of fillets of supporting elements for plate	b^{\prime}	$=$	16			
	t	$=$	2	mm		
Slenderness	b/t	$=$	8			
Limit 1	S_{1}	=	12.34			
Limit 2	S_{2}	$=$	32.87			
Factored limit state stress	$\phi \mathrm{F}_{\mathrm{L}}$	$=$	228.95	MPa		
Most adverse compressive limit state stress	F_{a}	$=$	27.56	MPa		
Most adverse tensile limit state stress	$\mathrm{Fa}_{\text {a }}$	=	222.70	MPa		
Most adverse compressive \& Tensile capacity factor	$\mathrm{fa}_{\mathrm{a}} / \mathrm{F}_{\mathrm{a}}$	$=$	0.19		PASS	
BENDING - IN-PLANE						
3.4.15 Compression in beams, extreme fibre, gross section rectangular tubes, box sections						3.4.15(2)
Unbraced length for bending		$=$	1200	mm		
Second moment of area (weak axis)		$=$	11125.333	mm^{4}		
Torsion modulus	J	$=$	22088.348	mm^{3}		
Elastic section modulus	Z	$=$	1437.6889	mm^{3}		
Slenderness	S	$=$	220.11			
Limit 1	S_{1}	$=$	0.39			
Limit 2	S_{2}	$=$	1695.86			
Factored limit state stress		$=$	196.36	MPa		
3.4.17 Compression in components of beams (component under uniform compression), gross section - flat plates with both edges supported						
		$=$	0.5			T3.3(D)
		$=$	2.04			T3.3(D)
Max. distance between toes of fillets of supporting elements for plate	b^{\prime}	=	16	mm		
	t	=	2	mm		
Slenderness	b/t	=	8			
Limit 1	S_{1}		12.34			
Limit 2	S_{2}	$=$	46.95			

Prime Consulting Engineers Pty. Ltd.
Email: info@primeengineers.com.au

Factored limit state stress	ϕF_{L}	$=$	228.95	MPa		
Most adverse in-plane bending limit state stress	Fbx	=	196.36	MPa		
Most adverse in-plane bending capacity factor	$\mathrm{fbx}^{\text {/ Fbx }}$	=	0.40		PASS	
BENDING - OUT-OF-PLANE						
NOTE: Limit state stresses, ϕF_{L} are the same for out-of-plane bending (doubly symmetric section)					PASS	
Factored limit state stress	ϕF_{L}	$=$	196.36	MPa		
Most adverse out-of-plane bending limit state stress Most adverse out-of-plane bending capacity factor		$=$	196.36	MPa		
		=	0.01			
COMBINED ACTIONS						
4.1.1 Combined compression and bending						4.1.1(2)
	F_{a}	$=$	27.56	MPa		... 3.4.8
	Fao^{0}	=	228.95	MPa		.. 3.4.10
	F_{bx}	=	196.36	MPa		... 3.4.17
	Fby	=	196.36	MPa		... 3.4.17
						$\begin{array}{r} \text {... 4.1.1 } \\ \text { (3) } \end{array}$
i.e.			1.0		PASS	
SHEAR						
3.4.24 Shear in webs (Major Axis)						... 4.1.1 (2)
Clear web height	h	=	26	mmmm		
	,	=	2			
Slenderness	h/t	$=$	13			
Limit 1	S_{1}	=	29.01			
Limit 2	S_{2}	=	59.31			
Factored limit state stress Stress From Shear force	ϕF_{L}	=	131.10	MPa		
	f_{sx}	=	V/Aw			
			0.89	MPa		

9.5 Short Rib 2

Job no. 23-696-1 Date: 17/11/2023

Prime Consulting Engineers Pty. Ltd

NAME	SYMBOL		VALUE	UNIT	NOTES	REF
30X20X2	Short Rib 2					
Alloy and temper	6061-T6					AS1664.1
Tension	$F_{\text {tu }}$	=	262	MPa	Ultimate	T3.3(A)
	$\mathrm{F}_{\text {ty }}$	$=$	241	MPa	Yield	
Compression	F_{cy}	=	241	MPa		
Shear	$\mathrm{F}_{\text {su }}$	=	165	MPa	Ultimate	
Shear	$\mathrm{F}_{\text {sy }}$	$=$	138	MPa	Yield	
Bearing	$\mathrm{F}_{\text {bu }}$	=	551	MPa	Ultimate	
Bearing	Fby	$=$	386	MPa	Yield	

Prime Consulting Engineers Pty. Ltd.
Email: info@primeengineers.com.au

Prime Consulting Engineers Pty. Ltd.
Email: info@primeengineers.com.au

Elastic section modulus	Z	$=$	$\begin{gathered} 1437.688 \\ 9 \end{gathered}$	mm^{3}		
Slenderness	S	=	201.77			
Limit 1	S_{1}	=	0.39			
Limit 2	S2	$=$	1695.86			
Factored limit state stress	ϕF_{L}	$=$	197.80	MPa		3.4.15(2)
3.4.17 Compression in components of beams (component under uniform compression), gross section - flat plates with both edges supported						
	k_{1}	$=$	0.5			T3.3(D)
	k_{2}	$=$	2.04			T3.3(D)
Max. distance between toes of fillets of supporting elements for plate	b^{\prime}	$=$	16	mm		
	t	$=$	2	mm		
Slenderness	b/t	$=$	8			
Limit 1	S_{1}	$=$	12.34			
Limit 2	S_{2}	$=$	46.95			
Factored limit state stress	$\phi F_{\text {L }}$	$=$	228.95	MPa		
Most adverse in-plane bending limit state stress		$=$	197.80	MPa		
Most adverse in-plane bending capacity factor	$f_{\text {bx }} / F_{\text {bx }}$	=	0.37		PASS	
BENDING - OUT-OF-PLANE						
NOTE: Limit state stresses, ϕF_{L} are the same for out-of-plane bending (doubly symmetric section)						
Factored limit state stress	ϕF_{L}		197.80	MPa		
Most adverse out-of-plane bending limit state stress			197.80	MPa		
Most adverse out-of-plane bending capacity factor	$\mathrm{f}_{\text {by }} / \mathrm{F}_{\text {by }}$	=	0.00		PASS	
COMBINED ACTIONS						
4.1.1 Combined compression and	bending					... 4.1.1(2)
	F_{a}		32.79	MPa		... 3.4.8
			228.95			... 3.4.10

10 Appendix B - Anchorage Design

Company : Carried out by :	PCE	Phone number : Mail address :	0289641818 info@primeengineers.com.au
Company:	Prime Consulting Engineers	Project name:	200 Series
Contact name :	KZ	Location :	
Phone number :	0289641818	Fastening point :	
Mail address :	info@primeengineers.com.au		

Comment :

Design Actions:

Action $[\mathrm{kN}] /[\mathrm{kNm}]$	Action type	N_{Ed}	$\mathrm{V}_{\mathrm{Ed}, \mathrm{X}}$	$\mathrm{V}_{\mathrm{Ed}, \mathrm{Y}}$	$\mathrm{M}_{\mathrm{Ed}, \mathrm{Z}}$	$\mathrm{M}_{\mathrm{Ed}, \mathrm{X}}$	$\mathrm{M}_{\mathrm{Ed}, \mathrm{Y}}$
Combination 1	standard	0.22	0.98	0	0	0	2.13

Specifications :

Static
Sustained Load: False

Date: 17/11/2023

Page: 2/6

Geometry :

Calculation Hypothesis:

- The anchoring plate is assumed to be sufficient to resist deformation imposed by the load actions.
- Connection between profile and base plate has not been checked
- RAMSET can only be held responsible if the calculation examples exactly reflect the application and if the installation is carried out according to the instruction given in the RAMSET specifications. The calculation is correct for RAMSET anchors only. The contractor or specifier should make sure that the base material is able to support the loads especially in the case of a group of anchors. RAMSET cannot be held responsible if this software package is modified without its written approval.

Ref : 17/11/2023-16:10:05 / Version 2022.11.04
Date: 17/11/2023

Resulting anchors forces

Loads on anchors

Anchor	Tensile	Shear[x]	Shear[y]
1	1.99 kN	0.24 kN	0 kN
2	0.05 kN	0.24 kN	0 kN
3	1.99 kN	0.24 kN	0 kN
4	0.05 kN	0.24 kN	0 kN

$\mathrm{N}_{\mathrm{g}}{ }^{*}[\mathrm{kN}]$	$\mathrm{N}_{\mathrm{h}}{ }^{*}[\mathrm{kN}]$	$\mathrm{e}_{\mathrm{Nx}}[\mathrm{mm}]$	$\mathrm{e}_{\mathrm{Ny}}[\mathrm{mm}]$
4.07	1.99	248.3	0
$\mathrm{~V}_{\mathrm{g}}{ }^{*}[\mathrm{kN}]$	$\mathrm{V}_{\mathrm{h}}{ }^{*}[\mathrm{kN}]$		
0.98	0.24		

Utilization

Tension load	Tension force $[\mathbf{k N}]$	Strength $[\mathbf{k N}]$	$\boldsymbol{\beta}_{\mathbf{N}}[\%]$
Pull out failure	1.99	6.59	30.2
Concrete cone failure	4.07	14.36	28.3
Splitting failure	$/$	$/$	$/$
Steel failure	1.99	19.8	10.0
Shear load	Shear force $[\mathbf{k N}]$	Strength $[\mathbf{k N}]$	$\boldsymbol{\beta}_{\mathbf{v}}[\%]$
Concrete Edge failure	$/$	$/$	$/$
Pryout failure	0.98	107.97	0.91
Steel failure	0.24	12.13	2.02

Combined tension and shear loads

$$
\begin{aligned}
& \beta_{\mathrm{Nc}}^{1.5}+\beta_{\mathrm{Vc}}^{1.5}=[0.30]^{1.5}+[0.01]^{1.5}=0.17 \leq 1 \\
& \beta_{\mathrm{Ns}}^{2}+\beta_{\mathrm{vs}}^{2}=[0.10]^{2}+[0.02]^{2}=0.01 \leq 1
\end{aligned}
$$

Ref : 17/11/2023-16:10:05 / Version 2022.11.04
Date: 17/11/2023

CALCULATION DETAILS

Tension load - Pull out failure

$\Phi_{\text {Mp }} \mathrm{N}_{\mathrm{RK}, \mathrm{p}} \geq \mathrm{N}_{\mathrm{n}}{ }^{*}$			[AS 5216:2021 - Table 3.4.2.1]
$\Phi_{M P} \mathrm{~N}_{\mathrm{Rk}, \mathrm{p}} \quad=6.59 \mathrm{kN}$	$\mathrm{N}^{0} \mathrm{Rk}, \mathrm{p}$	$=9 \mathrm{kN}$	
$\mathrm{N}_{\mathrm{RK}, \mathrm{p}} \quad=9.89 \mathrm{kN}$	$\psi_{\text {c }}$	$=1.10$	
$\Phi_{\text {Mp }} \quad=0.67$			
Tension load - Concrete cone failure			
$\Phi_{\text {MC }} \mathrm{N}_{\text {RK, }} \geq \mathrm{N}_{\mathrm{g}}{ }^{*}$			[AS 5216:2021 - Table 3.4.2.1]
$N_{R k, c}=N_{R k, c}^{0} \cdot \frac{A_{c, N}}{A_{c, N}^{0}} \cdot \Psi_{\mathrm{s}, \mathrm{~N}} \cdot \Psi_{R e, N} \cdot \Psi_{e c, N} \cdot \Psi_{M, N}$			[AS 5216:2021 - Eq.(6.2.3.1)]
$N_{R, k, c}^{0}=\mathrm{k}_{1} \cdot \sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}} \cdot \mathrm{h}_{\text {ef }}{ }^{1.5}$			[AS 5216:2021 - Eq.(6.2.3.2)]
$\Psi_{\mathrm{s}, \mathrm{~N}}=0.7+0.3 \cdot \frac{\mathrm{c}}{\mathrm{c}_{\mathrm{c}, \mathrm{~N}}} \leq 1$			[AS 5216:2021 - Eq.(6.2.3.4)]]
$\Psi_{\mathrm{Re}, \mathrm{~N}}=0.5+\frac{\mathrm{h}_{\mathrm{ef}}}{200} \leq 1$			[AS 5216:2021 - Eq.(6.7)]]
$\Psi_{e c, N}=\frac{1}{1+2 \cdot\left(e_{N} / S_{c_{r, N}}\right)} \leq 1$			[AS 5216:2021 - Eq.(6.2.3.6)]
$\Psi_{\mathrm{M}, \mathrm{N}}$			[AS 5216:2021 - Eq.(6.2.3.7)]
$\Phi_{M C} N_{\text {RK, }}=14.36 \mathrm{kN}$	$\mathrm{N}_{\text {Rk, }}{ }_{\text {c }}$	$=20.24 \mathrm{kN}$	
$N_{R k, c} \quad=21.54 \mathrm{kN}$	$\mathrm{A}_{\mathrm{c}, \mathrm{N}} / \mathrm{A}_{\mathrm{c}, \mathrm{N}}^{0}$	$=4$	
$\Phi_{\text {Mc }} \quad=0.67$	$\Psi_{\mathrm{ec}, \mathrm{Nx}}$	$=0.27$	
	$\Psi_{\text {ec, } \mathrm{Ny}}$	$=1.00$	
	$\Psi_{s, N}$	$=1.00$	
	$\Psi_{\text {re, } \mathrm{N}}$	$=1.00$	
	$\Psi_{M, N}$	$=1.00$	

Tension load - Splitting failure

Failure mode not decisive.

Ref : 17/11/2023-16:10:05 / Version 2022.11.04
Date: 17/11/2023

Tension load - Steel failure

$\Phi_{M S} N_{R k, s} \geq N_{h}{ }^{*}$ $N_{R k, s}$		AS 5216:2021 - Table 3.4.2.1] Approval]
$\Phi_{M s} N_{R k, s}$	$=19.8 \mathrm{kN}$	
$\mathrm{N}_{\mathrm{Rk}, \mathrm{s}}$	$=29.3 \mathrm{kN}$	
Φ_{Ms}	$=0.68$	

Shear load - Concrete edge failure

Failure mode not decisive.

Shear load - Pryout failure

$\Phi_{\mathrm{Mc}} \mathrm{V}_{\mathrm{Rk}, \mathrm{cp}} \geq \mathrm{V}_{\mathrm{g}}{ }^{*}$				
$V_{R K, C P}=\mathrm{k}_{8} \cdot \mathrm{~N}_{\mathrm{Rk}, \mathrm{c}}$ without supplementary reinforcement				[AS 5216:2021 - Eq.(7.2.4.1(1))]
$V_{R K, C P}=0.75 \cdot \mathrm{k}_{8} \cdot \mathrm{~N}_{\mathrm{RK}, \mathrm{C}}$ with supplementary reinforcement				[AS 5216:2021 - Eq.(7.2.4.1(2)]
$\Phi_{\text {Mc }} \mathrm{V}_{\text {RK, cp }}$	$=107.97 \mathrm{kN}$	$\mathrm{N}_{\mathrm{R}, \mathrm{c}}$	$=20.24 \mathrm{kN}$	
$\mathrm{V}_{\text {Rk, cp }}$	$=161.95 \mathrm{kN}$	$\mathrm{A}_{\mathrm{c}, \mathrm{N}} / \mathrm{A}_{\mathrm{c}, \mathrm{N}}^{0}$	$=4$	
$\Phi_{\text {Mc }}$	$=0.67$	$\Psi_{\text {ec, }, \text { x }}$	$=0.27$	
		$\Psi_{\text {ec, }, \text { y }}$	$=1.00$	
		$\Psi_{\text {s, }, ~}$	$=1.00$	
		$\Psi_{\text {re, } \mathrm{N}}$	$=1.00$	
		$\Psi_{\text {M, }}$	$=1.00$	

Shear load - Steel failure

$\Phi_{\mathrm{Ms}} \mathrm{V}_{\mathrm{Rk}, \mathrm{s}} \geq \mathrm{V}_{\mathrm{h}}{ }^{*}$		[AS 5216:2021- Tableau 3.4.3.1]
$\mathrm{V}_{\mathrm{R}, \mathrm{s}}$		Approval]
$\Phi_{\mathrm{Ms}} \mathrm{V}_{\mathrm{Rk}, \mathrm{s}}$	$=12.13 \mathrm{kN}$	
$\mathrm{V}_{\mathrm{Rk}, \mathrm{s}}$	$=15.4 \mathrm{kN}$	
Φ_{Ms}	$=0.79$	

INSTALLATION DATA

TRUBOLT XTREM M10x90/10

Product Code: 057769
Effective embedment : 60 mm
ETA-15/0893

Effective embedment :	60 mm
Minimum thickness of base material :	120 mm
Hole diameter in the base material :	10 mm
Hole depth in the base material :	75 mm
Installation torque :	45.00 Nm
Base plate thickness :	10 mm
Profile family (section type) :	$100 \times 100 \times 2.8$ SHS
Clearance diameter :	12 mm

INSTALLATION Method

Installation

1. Drill or core a hole to the recommended diameter (same as the TruBolt" ${ }^{\text {tu }}$) and depth using the fixture as a template. Clean the hole thoroughly with a hole cleaning brush. Remove the debris with a hand pump, compressed air, or vacuum.
2. Insert the anchor through the fixture and drive with a hammer until the washer contacts the fixture.
3. Tighten the nut with a torque wrench to the specified assembly torque.

11 Appendix C - Technical Data Sheet

OFLARE

200 Spanish Series

 Apart of the Commercial Umbrella Range

The Spanish 200 is a technically professionally engineered outdoor umbrella shade solution. The high quality imported fabric canopy is incorporated into one of the strongest aluminium umbrella frames on the market. The pole is designed to provide a reliably stable platform on which the canopy will sit securely for many years. Built to last and maintain a level of attractive appearance expected from a shade structure of this class, the structure is complemented by the addition of imported Spanish Recasens fabric available in 20 colours. Custom branding is offered for logos and company names.

Specifications

Square
$3 \times 3 \mathrm{~m}, 4 \times 4 \mathrm{~m}, 4 \times 5 \mathrm{~m}, 5 \times 5 \mathrm{~m} \& 6 \times 6 \mathrm{~m}$

Round
$4 \mathrm{~m}, 5 \mathrm{~m} \& 6 \mathrm{~m}$ diamete

Specifications

Size	$3 \mathrm{~m} \times 3 \mathrm{~m}$	$4 \mathrm{~m} \times 4 \mathrm{~m}$	$4 \mathrm{~m} \times 5 \mathrm{~m}$	$5 \mathrm{~m} \times 5 \mathrm{~m}$	$6 \mathrm{~m} \times 6 \mathrm{~m}$	4 m dia.	5 m dia.	6 m dia.
Height	4.35 m							
Clearance	3.25 m							
Arm Span	1.5 m	2 m	$2 \mathrm{~m} / 2.5 \mathrm{~m}$	2.5 m	4.26 m	2 m	2.5 m	4.26 m
Frame Weight	83 kg	88 kg	88 kg	110 kg	155 kg	83 kg	88 kg	110 kg
Roof Weight	10 kg	10 kg	11 kg	12 kg	15 kg	10 kg	12 kg	15 kg
Frame Box Dimensions	$480 \mathrm{~mm} \times 520 \mathrm{~mm} \times 600 \mathrm{~mm}$ । 240 kg							
Main Pole	$105 \mathrm{~mm} \times 105 \mathrm{~mm} \times 9 \mathrm{~mm}$							
Small Rib	$30 \mathrm{~mm} \times 20 \mathrm{~mm} \times 2 \mathrm{~mm}$							
Large Rib	$20 \mathrm{~mm} \times 40 \mathrm{~mm} \times 2 \mathrm{~mm}$							
Wind Rating	Open 60 kph Closed 140 kph							
Umbrella Base	350 mm Hinged Base Plate and 600 mm Hinged Base Plate							
Framework	Aluminium							
Fabric	Spanish Recasens							
Manufacturer's Warranty	Frame: 4 Years Recasens Fabric: 5 Years							

Technical Information

Round

4 m diameter

Round
5 m diameter

Round
6 m diameter

Fabric Colours

Spanish Recasens 100 \& $\mathbf{2 0 0}$ Series
Extreme Marquees imports the highest quality fabric from the Recasens brand located in Spain. The fabric is a high performance solution-dyed and fade resistant canvas that has been optimized for high tensile and tear strength. The Recasens brand has been manufacturing high quality fabrics in Spain since 1886

Frame Colour

Printing

UV Printing

UV printing is a form of digital printing that uses ultraviolet lights to dry or cure ink as it is printed. As the printer distributes ink on the surface of the marquee fabric, specially designed UV lights follow close behind, "curing" or "drying the ink instantly.

The benefits of UV printing are that it is very resistant to fading. With UV printing there is also no restrictions to the number of colours or logos on the design. UV printing is done on our heavy duty 900D PU Coated Polyester Fabric

Screen Printing
Screen Printing is the process whereby ink is forced onto the fabric through a mesh screen. Screen printing is ideal for simple designs that are produced in higher quantities.

350 mm Base Plate Ground Fixing

$3 \times 3 \mathrm{~m}, 4 \times 4 \mathrm{~m}$ \& 4 m diameter
Hinged Steel Base Plate
Bottom Plate: $350 \mathrm{~mm} \times 350 \mathrm{~mm} \times 10 \mathrm{~mm}$
Hinge Plate: $190 \mathrm{~mm} \times 190 \mathrm{~mm} \times 355 \mathrm{~mm}$ Weight: 10 kg aprox.
Screw sets: 4 (attach umbrella to base)
Concrete Bolts: 8 (permanent installation)

Installation

The base plate comes separated from the umbrella pole. Base is attached to the umbrella with 4 screws and washers. There are 8 concrete bolts to attach the base plate permanently a concrete slab.

Hinged Steel Base Plate

Bottom Plate: $600 \mathrm{~mm} \times 600 \mathrm{~mm} \times 10 \mathrm{~mm}$
Hinge Plate: $300 \mathrm{~mm} \times 300 \mathrm{~mm} \times 355 \mathrm{~mm}$ Weight: 20kg aprox.
Screw sets: 4 (attach umbrella to base)
Concrete Bolts: 8 (permanent installation)

Installation

The base plate comes separated from the umbrella pole. Base is attached to the umbrella with 4 screws and washers. There are 8 concrete bolts to attach the base plate permanently a concrete slab.

Bolt \& Screw Measurement Map

Bolt \& Screw Measurement Map

Base \& Umbrella Installation Example

Engineer Certification

https://www.extreme-marquees.com.au/ pdf/Umbrellas/Certificates/200-Spanish-Umbrella-Engineer-Cert-Round.pdf

https://www.extreme-marquees.com.au/ pdf/Umbrellas/Certificates/200-Spanish-FS-6m-Foundation.pdf

PDF

Fabric Colours
https://www.extreme-marquees.com.au/ pdf/Umbrellas/Specification/Fabric-Span-ish-Recasen-100\&200-Series.pdf

